Citation: | HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013 |
[1] |
LLORET A, VILLAR M V.Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite[J]. Physics and Chemistry of the Earth, 2007, 32(8): 701-715.
|
[2] |
孙文静, 孙德安, 刘仕卿, 等. 高吸力下高庙子钙基膨润土的土水-力学特性[J]. 岩土工程学报, 2014, 36(2): 346-353.
(SUN Wen-jing, SUN De-an, LIU Shi-qing, et al.Hydro-mechanical behaviour of GMZ Ca-bentonite at high suctions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 346-353. (in Chinese)) |
[3] |
YE W M, WAN M, CHEN B, et al.Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. J Cent South Univ Technol, 2009, 16: 821-826.
|
[4] |
TANG A M, CUI Y J.Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
|
[5] |
JACINTO A C, VILLAR M V, GÓMEZ-ESPINA R, et al. Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science, 2009, 42(3/4): 575-582.
|
[6] |
SPOSITO G, PROST R.Structure of water adsorbed on smectites[J]. Chemical Reviews, 1982, 82(6): 553-573.
|
[7] |
CASES J M, BEREND I, BESSON G, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 1: the sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
|
[8] |
CASES J M.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 3: the Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms[J]. Clays & Clay Minerals, 1997, 45(1): 8-22.
|
[9] |
BEREND I, CASES J M, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites 2: the Li+, Na+, K+, Rb+and Cs+-exchanged forms[J]. Clays & Clay Minerals, 1995, 43(3): 324-336.
|
[10] |
SILVA O, GRIFOLL J.A soil‐water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 431(11): 398-408.
|
[11] |
HATCH C D, WIESE J S, CRANE C C, et al.Water adsorption on clay minerals as a function of relative humidity: application of bet and freundlich adsorption models[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(3): 1790.
|
[12] |
MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite i: heat of desorption and application of BET theory1[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
|
[13] |
DIOS C G, HUERTAS F J, ROMERO T E, et al.Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption[J]. Journal of Colloid & Interface Science, 1997, 185(2): 343-354.
|
[14] |
KHORSHIDI M, LU N, AKIN I D, et al.Intrinsic relationship between specific surface area and soil water retention[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(1): 04016078.
|
[15] |
WOODRUFF W F, REVIL A.CEC-normalized clay-water sorption isotherm[J]. Water Resour Res, 2011, 47: 553-561.
|
[16] |
REVIL A, LU N.Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
|
[17] |
AKIN I D.Clay surface properties by water vapor sorption methods[D]. Madison: University of Wisconsin-Madison, 2014.
|
[18] |
MORODOME S, KAWAMURA K.Swelling behavior of Na- and Ca-montmorillonite up to 150°C by in situ X-ray diffraction experiments[J]. Clays & Clay Minerals, 2009, 57(2): 150-160.
|
[19] |
FERRAGE, LANSON E, SAKHAROV B, et al.Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
|
[20] |
BOHN H L, MCNEAL B L.Soil chemistry[M]. 2nd ed. New York: JohnWiley, 1985.
|
[21] |
近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2005.
(KONDO S, ISHIKAWA T, ABE I.Adsorption science[M]. LI Guo-xi, tran. Beijing: Chemical Industry Press, 2005. (in Chinese)) |
[22] |
ISRAELACHVILI J N.Intermolecular and surface forces[M]. 3rd ed. Amsterdam: Elsevier, 2011.
|
[23] |
FORESTIER L L, MULLER F, VILLIERAS F, et al.Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue[J]. Applied Clay Science, 2010, 48(1): 18-25.
|
[24] |
LIKOS W J, LU N.Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite[J]. Clays & Clay Minerals, 2006, 54(4): 515-528.
|
[25] |
NITAO J J, BEAR J.Potentials and their role in transport in porous media[J]. Water Resource Res, 1996, 32(2): 225-250.
|
[26] |
MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite: II effect of exchangeable Ions and lattice swelling as measured by X-Ray diffraction[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
|
[27] |
KEREN R.Water vapor isotherms and heat of immersion of Na/Ca-Montmorillonite systems—I: homoionic clay[J]. Clays & Clay Minerals, 1975, 23(3): 193-200.
|
1. |
周葆春,赵鑫鑫,马全国,郎梦婷. 9种土样高吸力下的持水特征. 岩土工程学报. 2021(02): 236-244 .
![]() | |
2. |
莫燕坤,刘观仕,牟智,赵青松. 黏土中结合水含量测试方法研究进展. 土工基础. 2021(03): 393-399 .
![]() | |
3. |
吴谦,毛雪松,王常明. 结合水对软土次固结特性的影响机制研究. 中国公路学报. 2021(07): 215-225 .
![]() | |
4. |
李凤洁,王旭东,郭青林. 湿度影响下莫高窟壁画地仗层吸附水及吸力变化特征研究. 工程地质学报. 2021(04): 1188-1198 .
![]() | |
5. |
康海伟,李萍,侯晓坤,李同录,夏增选,张辉. 原状黄土土水特征滞后性研究. 水文地质工程地质. 2020(02): 76-83 .
![]() | |
6. |
张云龙,项伟,黄伟,刘清秉,DAO Minh huan. 钠基蒙脱土水合演化机制. 岩土力学. 2019(11): 4391-4400 .
![]() |