Model tests on deformation of embankment in blast-induced liquefied field
-
Graphical Abstract
-
Abstract
A full sandy foundation is prone to be liquefied under an earthquake, explosion or other vibration loadings. As a result, the upper structures such as embankments on the foundation will be damaged. Aiming at the deformation problems of an embankment in a liquefied foundation, the field tests on explosion-induced liquefaction are conducted considering the effects of the embankment materials and reinforcement measures of the embankment foundation on its deformation and cracks. The results show that the subsidence of the embankment mainly occurs within 1 ~ 2 hours after the explosions, which accounts for 84 % ~ 87 % of the total subsidence accumulated in 7 days. The settlement of the embankment with fine aggregate becomes stable after 7 days. The subsidence of the embankment with fine aggregate is 24 % more than that without fine aggregate. The settlement of the foundation reinforced by geogrid and geotextile can be effectively reduced by 10% of the dam settlement in the liquefied ground. The cracks on the embankment body mainly appear in the section with fine aggregate and the interface between two different materials, and they extend along the dam body. The domestic and international specifications for the settlement of structures on a liquefied foundation are summarized. The settlement figure of buildings with shallow footings is adopted as the prediction method for the embankment settlement in this test. The results indicate that the predicted values are close to the measured data.
-
-