• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
Citation: CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051

Particle flow simulation for contact erosion between uniform particles

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • Contact erosion easily occurs at the interface between two soil layers subjected to a groundwater flow. Particles of the fine soils are eroded by the flow and transported through the pores of the coarse layer, which may lead to failure of a hydraulic structure. To investigate the meso-mechanism of contact erosion, different layers consisting of uniform particles subjected to a flow parallel to the interface are simulated using the particle flow code. The results show that when the ratio of the effective diameter of the fine layer to the effective pore diameter of the coarse layer is larger than 0.50, the contact erosion does not occur. When the contact erosion happens between layers, the fine particles at the interface will move and be transported by the flows. With the increase in the loss quantity of the fine particles, the coarse particles will sink and the flow velocity will increase.
  • [1]
    刘 杰, 谢定松, 崔亦昊. 江河大堤双层地基渗透破坏机理模型试验研究[J]. 水利学报, 2008, 39(11): 1211-1220. (LIU Jie, XIE Ding-song, CUI Yi-hao. Failure mechanism of seepage in levees with double-layer foundation[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1211-1220. (in Chinese))
    [2]
    STÉPHANE B. Erosion in geomechanics applied to dams and levees[M]. New York: John Wiley and Sons Inc, 2013.
    [3]
    ИСТОМИНА В С. фалвтрадионная устойчивость грунтов[M]. Госстройиэдат, 1957. (ISTOMINA B C. Soil seepage stability[M]. Moscow, 1957. )
    [4]
    BRAUNS J. Erosionsverhalten geschichteten bodens bei horizontaler durchstromung[J]. Wasserwirtschaft, 1985, 75: 448-453.
    [5]
    BEZUIJEN A, KLEIN-BRETELLER M, BAKKER K J. Design criteria for placed block revetments and granular filters[C]// Proceedings of the 2 nd International Conference on Coastal & Port Engineering in Developing Countries. Beijing, 1987.
    [6]
    GUIDOUX C, FAURE Y H, BEGUIN R, et al. Contact erosion at the interface between granular filter and various base soils with tangential flow[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 741-750.
    [7]
    WÖRMAN A, OLAFSDOTTIR R. Erosion in a granular medium interface[J]. Journal of Hydraulic Research,1992, 30(5): 639-655.
    [8]
    DEN ADEL H, KOENDERS M A, BAKKER K J. The analysis of relaxed criteria for erosion-control filters[J]. Canadian Geotechnical Journal, 1994, 31(6): 829-840.
    [9]
    BEGUIN R, PHILIPPE P, FAURE Y H. Experimental study of contact erosion at a granular interface[J]. Springer Series in Geomechanics and Geoengineering, 2011, 11: 131-136.
    [10]
    BEGUIN R, PHILIPPE P, FAURE Y H. Pore-scale flow measurements at the interface between a sandy layer and a model porous medium: application to statistical modeling of contact erosion[J]. Journal of Hydraulic Engineering, 2013, 139(1): 1-11.
    [11]
    SARI H, CHAREYER B, CATALANO E, et al. Investigation of internal erosion process using a coupled DEM-fluid method[C]// Proceedings of the 2 nd International Conference on Particle-based Methods-Particles 2011. Barcelona, 2011.
    [12]
    SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters[J]. Journal of Geotechnical Engineering, 1984, 110(6): 684-700.
    [13]
    ZOU Y H, CHEN Q, CHEN X Q, et al. Discrete numerical modeling of particle transport in granular filters[J]. Computers and Geotechnics, 2013, 47(47): 48-56.
    [14]
    SHAMY U E, AYDIN F. A micro-scale model for the analysis of flood-induced piping in river levees[C]// Proceedings of Sessions of Geo-Denver 2007 Congress: Embankments, Dams and Slopes. GSP, 2007: 161.
    [15]
    SHAMY U E, AYDIN F. Multiscale modeling of flood-induced piping in river levees[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1385-1398.
    [16]
    ABDELHAMID Y, SHAMY U E. Multiscale modeling of flood-induced scour in a particle bed[C]//GeoCongress 2012, Geotechnical Special Publicaiton, ASCE. Oakland, 2012: 740-749.
    [17]
    HUANG Q F, ZHAN M L, SHENG J C, et al. Investigation of fluid flow-induced particle migration in granular filters using a DEM-CFD method[J]. Journal of Hydrodynamics, 2014, 26(3): 406-415.
    [18]
    JACKSON R. The dynamics of fluidized particles[M]. New York: Cambridge University Press, 2000.
    [19]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [20]
    BOUILLARD J X, LYCZKOWSKI R W, GIDASPOW D. Porosity distributions in a fluidized bed with an immersed obstacle[J]. AICHE Journal, 1989, 35(6): 908-922.
    [21]
    STÉPHANE B. Erosion of geomaterials[M]. New York: John Wiley and Sons Inc, 2012.
    [22]
    GOLTZ M. Determination of critical filter velocity in suffusive soils[R]. Saint Petersburg: European Working Group on Internal Erosion, 2009.
    [23]
    刘 杰. 土石坝渗流控制理论基础及工程经验教训[M]. 北京: 中国水利水电出版社, 2006. (LIU Jie. Seepage control of earth-rock dams: theoretical basis, engineering experiences and lessons[M]. Beijing: China Water & Power Press, 2006. (in Chinese))

Catalog

    Article views (361) PDF downloads (376) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return