• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xi-wen, TANG Xiao-wei, YAO Ji-fei, YANG Ling-qiang. Adaptive time stepping method for seismic liquefaction disasters and its control parameters[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012
Citation: ZHANG Xi-wen, TANG Xiao-wei, YAO Ji-fei, YANG Ling-qiang. Adaptive time stepping method for seismic liquefaction disasters and its control parameters[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012

Adaptive time stepping method for seismic liquefaction disasters and its control parameters

More Information
  • Received Date: September 24, 2015
  • Published Date: October 24, 2016
  • Seismic liquefaction of saturated soil is a serious problem in the area of geotechnical earthquake engineering. In the numerical analysis of dynamic process, calculation accuracy and efficiency are the two important indexes to evaluate the numerical method. An adaptive time stepping method is proposed based on a solid-fluid coupled method and an elasto-plastic analysis platform. According to the estimation system of displacement errors, pore water pressure errors and mixed errors, the strategy of time step adjustment and the relevant control parameters are established. Through the sensitivity analysis of control parameters, the error tolerance and proportionality coefficient of pore water pressure errors are identified as the main control parameters, while the initial time step size, lower and upper limits of time step adjustment factor are identified as the assistant parameters. Then, the adaptive stepping method is applied in the numerical analysis of a subway station located in the liquefiable area. The time histories of the uplift displacement and the excess pore water pressure ratio are obtained, which indicates the hazards of underground structure uplift induced by seismic liquefaction. Besides, the fixed stepping and adaptive stepping methods are compared, and it is found that using the adaptive stepping method can save more computational cost without losing the accuracy.
  • [1]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [2]
    黄 雨, 于 淼, BHATTACHARYA S. 2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 2013, 35(5): 834-840. (HANG Yu, YU Miao, BHATTACHARYA S. Review on liquefaction-induced damages of soil and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 834-840. (in Chinese))
    [3]
    陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755. (CHEN Guo-xing, JIN Dan-dan, CHANG Xiang-dong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755. (in Chinese))
    [4]
    袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [5]
    凌贤长, 唐 亮, 苏 雷, 等. 中日规范中关于液化和侧向扩流场地桥梁桩基抗震设计考虑之比较[J]. 防灾减灾工程学报, 2011, 31(5): 490-495. (LING Xian-chang, TANG Liang, SU Lei, et al. Comparison of seismic design consideration between chinese and Japanese seismic design codes for bridge pile foundation in liquefying ground and lateral spreading ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5): 490-495. (in Chinese))
    [6]
    陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408-1413. (CHEN Yu-min, LIU Han-long, SHAO Guo-jian, et al. Laboratory tests on flow characteristics of liquefaction and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408-1413. (in Chinese))
    [7]
    YE B, YE G L, YE W M, et al. A pneumatic shaking table and its application to a liquefaction test on saturated sand[J]. Natural Hazards, 2013, 66(2): 375-388.
    [8]
    张建民, 王 刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. (ZHANG Jian-min, WANG Gang. Mechanism of large post liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835-840. (in Chinese))
    [9]
    王 刚, 张建民. 砂土液化变形的数值模拟[J]. 岩土工程学报, 2007, 29(3): 403-409. (WANG Gang, ZHANG Jian-min. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 403-409. (in Chinese))
    [10]
    汪明武, 井合进, 飞田哲男. 栈桥式构筑物抗震性能动态离心模型试验的数值模拟[J]. 岩土工程学报, 2005, 27(7): 738-741. (WANG Ming-wu, IAI Susumu, TOBITA Tetsuo. Numerical modelling for dynamic centrifuge model test of the seismic behaviors of pile-supported structure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 738-741. (in Chinese))
    [11]
    JIA Y, TANG X W, LUAN M T, et al. Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2): 217-224.
    [12]
    黄 雨, 郝 亮, 野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262. (HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262. (in Chinese))
    [13]
    HUANG Y, ZHANG W J, DAI Z L, et al. Numerical simulation of flow processes in liquefied soils using a soil-water-coupled smoothed particle hydrodynamics method[J]. Natural Hazards, 2013, 69(1): 809-827.
    [14]
    TANG X, SHAO Q. Numerical simulation on seismic liquefaction by adaptive mesh refinement due to two recovered fields in error estimation[J]. Soil Dynamics and Earthquake Engineering, 2013, 49(6): 109-121.
    [15]
    张西文, 唐小微, 渦岡良介, 等. 砂土地震液化分析中 Newmark时域离散的误差评估[J]. 哈尔滨工程大学学报, 2015, 36(3): 322-326. (ZHANG Xi-wen, TANG Xiao-wei, UZUOKA Ryosuke, et al. Temporal discretization error for the Newmark scheme in sand liquefaction analysis[J]. Journal of Harbin Engineering University, 2015, 36(3): 322-326. (in Chinese))
    [16]
    张西文, 唐小微, 渦岡良介. 液化场地堤坝地震响应的自适应步长法数值模拟[J]. 水利学报, 2014, 45(9): 1106-1113. (ZHANG Xi-wen, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation on seismic response of embankment on liquefiable sand using adaptive time stepping method[J]. Chinese Journal of Hydraulic Engineering, 2014, 45(9): 1106-1113. (in Chinese))
    [17]
    AKAI K, TAMURA T. Numerical analysis of multi- dimensional consolidation accompanied with elastic- plastic constitutive equation[C]// Proceedings of Japan Society of Civil Engineers. Wakayama, 1978: 95-104.
    [18]
    DI Y, SATO T. Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation[J]. Computers and Geotechnics, 2003, 30(7): 623-635.
    [19]
    ZHANG X W, TANG X W, SHAO Q, et al. The uplift behavior of large underground structures in liquefied field[C]// Applied Mechanics and Materials. Jinan, 2011: 2112-2118.
    [20]
    ZHANG X W, TANG X W, UZUOKA R. Numerical simulation of 3D liquefaction disasters using an automatic time stepping method[J]. Natural Hazards, 2015, 77(2): 1275-1287.
    [21]
    SLOAN S W, ABBO A J. Biot consolidation analysis with automatic time stepping and error control Part 1: Theory and implementation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(6): 467-492.
    [22]
    SHENG D, SLOAN S W. Time stepping schemes for coupled displacement and pore pressure analysis[J]. Computational Mechanics, 2003, 31(1/2): 122-134.
    [23]
    ZENG L F, WIBERG N E, LI X D. A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis[J]. Earthquake Engineering and Structure Dynamics, 1992, 21(7): 555-571.
    [24]
    ZHANG Z H, YANG Z J, LIU G H. An adaptive time-stepping procedure based on the scaled boundary finite element method for elastodynamics[J]. International Journal of Computational Methods, 2012, 9(1): 1-13.
    [25]
    TOBITA T, KAN G C, IAI S. Uplift behaviour of buried structures under strong shaking[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics 2010. Zurich, 2010: 1439-1444.
    [26]
    OKA F, YASHIMA A, TATEISHI A, et al. A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus[J]. Géotechnique, 1999, 49(5): 661-680.

Catalog

    Article views (359) PDF downloads (220) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return