Citation: | ZHANG Xi-wen, TANG Xiao-wei, YAO Ji-fei, YANG Ling-qiang. Adaptive time stepping method for seismic liquefaction disasters and its control parameters[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012 |
[1] |
YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
|
[2] |
黄 雨, 于 淼, BHATTACHARYA S. 2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 2013, 35(5): 834-840. (HANG Yu, YU Miao, BHATTACHARYA S. Review on liquefaction-induced damages of soil and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 834-840. (in Chinese))
|
[3] |
陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755. (CHEN Guo-xing, JIN Dan-dan, CHANG Xiang-dong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755. (in Chinese))
|
[4] |
袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
|
[5] |
凌贤长, 唐 亮, 苏 雷, 等. 中日规范中关于液化和侧向扩流场地桥梁桩基抗震设计考虑之比较[J]. 防灾减灾工程学报, 2011, 31(5): 490-495. (LING Xian-chang, TANG Liang, SU Lei, et al. Comparison of seismic design consideration between chinese and Japanese seismic design codes for bridge pile foundation in liquefying ground and lateral spreading ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5): 490-495. (in Chinese))
|
[6] |
陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408-1413. (CHEN Yu-min, LIU Han-long, SHAO Guo-jian, et al. Laboratory tests on flow characteristics of liquefaction and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408-1413. (in Chinese))
|
[7] |
YE B, YE G L, YE W M, et al. A pneumatic shaking table and its application to a liquefaction test on saturated sand[J]. Natural Hazards, 2013, 66(2): 375-388.
|
[8] |
张建民, 王 刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. (ZHANG Jian-min, WANG Gang. Mechanism of large post liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835-840. (in Chinese))
|
[9] |
王 刚, 张建民. 砂土液化变形的数值模拟[J]. 岩土工程学报, 2007, 29(3): 403-409. (WANG Gang, ZHANG Jian-min. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 403-409. (in Chinese))
|
[10] |
汪明武, 井合进, 飞田哲男. 栈桥式构筑物抗震性能动态离心模型试验的数值模拟[J]. 岩土工程学报, 2005, 27(7): 738-741. (WANG Ming-wu, IAI Susumu, TOBITA Tetsuo. Numerical modelling for dynamic centrifuge model test of the seismic behaviors of pile-supported structure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 738-741. (in Chinese))
|
[11] |
JIA Y, TANG X W, LUAN M T, et al. Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2): 217-224.
|
[12] |
黄 雨, 郝 亮, 野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262. (HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262. (in Chinese))
|
[13] |
HUANG Y, ZHANG W J, DAI Z L, et al. Numerical simulation of flow processes in liquefied soils using a soil-water-coupled smoothed particle hydrodynamics method[J]. Natural Hazards, 2013, 69(1): 809-827.
|
[14] |
TANG X, SHAO Q. Numerical simulation on seismic liquefaction by adaptive mesh refinement due to two recovered fields in error estimation[J]. Soil Dynamics and Earthquake Engineering, 2013, 49(6): 109-121.
|
[15] |
张西文, 唐小微, 渦岡良介, 等. 砂土地震液化分析中 Newmark时域离散的误差评估[J]. 哈尔滨工程大学学报, 2015, 36(3): 322-326. (ZHANG Xi-wen, TANG Xiao-wei, UZUOKA Ryosuke, et al. Temporal discretization error for the Newmark scheme in sand liquefaction analysis[J]. Journal of Harbin Engineering University, 2015, 36(3): 322-326. (in Chinese))
|
[16] |
张西文, 唐小微, 渦岡良介. 液化场地堤坝地震响应的自适应步长法数值模拟[J]. 水利学报, 2014, 45(9): 1106-1113. (ZHANG Xi-wen, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation on seismic response of embankment on liquefiable sand using adaptive time stepping method[J]. Chinese Journal of Hydraulic Engineering, 2014, 45(9): 1106-1113. (in Chinese))
|
[17] |
AKAI K, TAMURA T. Numerical analysis of multi- dimensional consolidation accompanied with elastic- plastic constitutive equation[C]// Proceedings of Japan Society of Civil Engineers. Wakayama, 1978: 95-104.
|
[18] |
DI Y, SATO T. Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation[J]. Computers and Geotechnics, 2003, 30(7): 623-635.
|
[19] |
ZHANG X W, TANG X W, SHAO Q, et al. The uplift behavior of large underground structures in liquefied field[C]// Applied Mechanics and Materials. Jinan, 2011: 2112-2118.
|
[20] |
ZHANG X W, TANG X W, UZUOKA R. Numerical simulation of 3D liquefaction disasters using an automatic time stepping method[J]. Natural Hazards, 2015, 77(2): 1275-1287.
|
[21] |
SLOAN S W, ABBO A J. Biot consolidation analysis with automatic time stepping and error control Part 1: Theory and implementation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(6): 467-492.
|
[22] |
SHENG D, SLOAN S W. Time stepping schemes for coupled displacement and pore pressure analysis[J]. Computational Mechanics, 2003, 31(1/2): 122-134.
|
[23] |
ZENG L F, WIBERG N E, LI X D. A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis[J]. Earthquake Engineering and Structure Dynamics, 1992, 21(7): 555-571.
|
[24] |
ZHANG Z H, YANG Z J, LIU G H. An adaptive time-stepping procedure based on the scaled boundary finite element method for elastodynamics[J]. International Journal of Computational Methods, 2012, 9(1): 1-13.
|
[25] |
TOBITA T, KAN G C, IAI S. Uplift behaviour of buried structures under strong shaking[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics 2010. Zurich, 2010: 1439-1444.
|
[26] |
OKA F, YASHIMA A, TATEISHI A, et al. A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus[J]. Géotechnique, 1999, 49(5): 661-680.
|