• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHAO Guang-hui, ZHAO Zhi-feng, WU Zheng-yu. Model tests on shaft capacity properties of bottom uplift pile[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1140-1146. DOI: 10.11779/CJGE201606022
Citation: SHAO Guang-hui, ZHAO Zhi-feng, WU Zheng-yu. Model tests on shaft capacity properties of bottom uplift pile[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1140-1146. DOI: 10.11779/CJGE201606022

Model tests on shaft capacity properties of bottom uplift pile

More Information
  • Received Date: March 28, 2015
  • Published Date: June 24, 2016
  • The bottom uplift pile is a new type uplift pile for solving the problems of concrete cracks in pile shaft and the effect of interaction between strata and pile head. The unbonded steel strand with both ends anchored in the toe of concrete pile and slab of underground structure respectively is adopted to transmit the uplift load into pile bottom. There are some differences between tensile pile and bottom uplift pile in shaft capacity properties. The model pile tests are adopted to investigate the characteristics of the ultimate shaft capacity, shaft axial force and shaft friction of tensile pile and bottom uplift pile. The effects of Possion’s ratio are discussed for the above two types of piles. For the method calculating the shaft capacity of tensile pile, pile stiffness coefficient is used to determine the tension coefficient of bottom uplift pile. The method for shaft capacity is proposed and validated for bottom uplift pile.
  • [1]
    黄茂松, 任 青, 王卫东, 等. 深层开挖条件下抗拔桩极限承载力分析[J]. 岩土工程学报, 2008, 29(11): 1689-1695. (HUANG Mao-song, REN Qing, WANG Wei-dong, et al. Analysis for ultimate uplift capacity of tension pile under deep excavation[J]. Chinese Journal of geotechnical Engineering, 2008, 29(11): 1689-1695. (in Chinese))
    [2]
    迟铃泉, 赵志民, 刘金砺. 抗拔灌注桩后张预应力技术试验研究与工程应用[C]// 桩基工程技术进展2009. 北京: 中国建筑工业出版社, 2009. (CHI Ling-quan, ZHAO Zhi-min, LIU Jin-li. Experimental research and engineering applications of cast-in-situ tensile pile with post tensioned prestressing technology[C]// Pile Foundation Engineering Technology Progress 2009. Beijing: China Architecture and Building Industry Press, 2009. (in Chinese))
    [3]
    王 武. 新型柔性桩顶抗拔桩与土体相互作用研究[D]. 南京: 南京林业大学, 2013. (WANG Wu. Study on the interaction between new type of soft top bottom uplift pile and soil[D]. Nanjing: Nanjing Forestry University, 2013. (in Chinese))
    [4]
    赵晓光. 无黏结后张预应力抗拔灌注桩的试验研究[D].北京: 中国建筑科学研究院, 2012. (ZHAO Xiao-guang. Experiment study on the unbonded post-tensioned prestressed cast-in-situ uplift pile[D]. Beijing: China Academy of Building Research, 2012. (in Chinese))
    [5]
    MEYERHOF G G, ADAMS J I. The ultimate uplift capacity of foundations[J]. Canadian Geotechnical Journal, 1968, 5(4): 225-244.
    [6]
    CHATTOPADHYAY B C, PISE P J. Uplift capacity of piles in sand[J]. Journal of Geotechnical Engineering, 1986, 112(9): 888-904.
    [7]
    DASH B K, PISE P J. Effect of compressive load on uplift capacity of model piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 987-992.
    [8]
    DESHMUKH V B, DEWAIKAR D M, CHOUDHURY D. Uplift capacity of pile anchors in cohesionless soil[C]// Deep Foundations and Geotechnical In Situ Testing. Shanghai, 2010(205): 267-276.
    [9]
    张忠苗, 刘念武, 房 凯.考虑端承力时泊松效应对抗拔系数的影响[J]. 岩土工程学报, 2011, 33(增刊2): 494-497. (ZHANG Zhong-miao, LIU Nian-wu, FANG Kai. Influence of Poisson’s effect on uplift coefficient considering tip resistance[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 494-497. (in Chinese))
    [10]
    AMIRA M, YOKOYAMA Y, IMAIZUMI S. Friction capacity of axially loaded model pile in sand[J]. Soils and Foundations, 1995, 35(1): 75-82.
    [11]
    黄 锋, 黄文峰, 李广信, 等. 不同受载方式下桩侧阻的渗水力模型试验研究[J]. 岩土工程学报, 1998, 20(2): 10-14. (HUANG Feng, Huang Wen-feng, Li Guang-xin, et al. Study on the shaft fraction of single pile under compressive and tensile loading[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 10-14. (in Chinese))
    [12]
    CRAIG W H, SABAGH S K. Stress-level effects in model tests on piles[J]. Canadian Geotechnical Journal, 1994, 31(1): 28-41.
    [13]
    FRETTI C, LO PRESTI D C F, PEDRONI S. A pluvial deposition method to reconstitute well-graded sand specimens[J]. ASTM Geotechnical Testing Journal, 1995, 18(2): 292-298.
    [14]
    黄 锋, 李广信, 郑继勤. 单桩在压与拔荷载下桩侧摩阻力的有限元计算研究[J]. 工程力学, 1999, 16(6): 69,97-101. (HUANG Feng, Li Guang-xin,ZHEN Ji-qin. Study on the shaft fraction of single pile under compressive and tensile loading[J]. Engineering Mechanics, 1999, 16(6): 69,97-101. (in Chinese))
    [15]
    DE NICOLA A, RANDOLPH M F. Tensile and compressive shaft capacity of piles in sand[J]. Journal of Geotechnical Engineering, 1993, 119(12): 1952-1973.
    [16]
    JGJ94—2008建筑桩基技术规范[S]. 2008. (JGJ94—2008 Technical code for building pile foundations[S]. 2008. (in Chinese))
    [17]
    POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353.
    [18]
    KULHAWY F H, O'ROURKE T D, STEWART J P, et al. Transmission line structure foundations for uplift- compression loading, load test summaries: appendix to epri final report el-2870[R]. Palo Alto: Electric Power Research Institute, 1983.
    [19]
    AMIRA M, YOKOYAMA Y, IMAIZUMI S. effect of pile compressibility on shaft friction capacity[C]// Proceedings- Japan Society of Civil Engineers. Tottori, 1996: 1-10.

Catalog

    Article views (576) PDF downloads (342) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return