• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Ping, BO Jing-shan, LI Xiao-bo, XIAO Rui-jie. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022
Citation: LI Ping, BO Jing-shan, LI Xiao-bo, XIAO Rui-jie. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022

Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area

More Information
  • Received Date: March 16, 2015
  • Published Date: February 24, 2016
  • Thet effect of site soil on ground motion is one of the main issues about earthquake engineering research. Based on the acceleration time histories recorded at 6 stations in Anning River and Qionghai Lake area, the amplification effect of 5 soil stations is studied by using the traditional spectral ratio method. The results are as follows: (1) There is good correlation between the amplification on ground motion in these sites and the geological zone, and the amplification effect on ground motion is different in different geological zones. According to the amplification of the size, the descending sequence is Qionghai Lake Plain subregion (Ⅲ3), Qionghai Lake and flood plain subregion (Ⅲ2), Anning River Plain area (Ⅱ), piedmont alluvial subregion (Ⅰ2) and Zhongshan bedrock subregion (Ⅰ1). (2) The piedmont alluvial subregion has no amplification effect on the low-frequency component of ground motion but significant amplification effect on the high-frequency one. (3) The Anning River Plain area has amplification effect on both the low-and high-frequency components of ground motion, and the amplification effect on the high frequency is stronger than that on the low frequency. The amplification effects of three components are different, that is, the descending amplification in the low frequency is UD, NS and EW, and that in the high frequency is EW, NS and UD. (4) The Qionghai Lake flood plain subregion has significant amplification effect on both the low-and high-frequency components of ground motion, and the maximum factor of amplification is about 1 Hz, with small differences among the maximum factors. (5) The Qionghai Lake Plain subregion has amplification effect on both the low-and high-frequency components of ground motion, the amplification factor is large, and the distribution band of significant amplification is wide.
  • [1]
    肖文海. 大型河谷场地地震动特征研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2008. (XIAO Wen-hai. The research of the characteristics of the ground motion in large valley terrain[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2008. (in Chinese))
    [2]
    曲国胜, 黄建发, 李小军, 等. 南亚(巴基斯坦)地震灾害分布及成因分析[J]. 震灾防御技术, 2008, 3(1): 85-94. (QU Guo-sheng, HUANG Jian-fa, LI Xiao-jun, et al. The hazard assessment and analysis of Pakistan earthquake in 2005[J]. Technology for Earthquake Disaster Prevention, 2008, 3(1): 85-94. (in Chinese))
    [3]
    李 平. 汶川特大地震汉源震害异常研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013. (LI Ping. The research of seismic damage anomalies in Hanyuan during Wenchuan Great Earthquake[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese))
    [4]
    王 伟. 地震动的山体地形效应[D]. 哈尔滨: 中国地震局工程力学研究所, 2011. (WANG Wei. Effect of hill topography on ground Motion[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011. (in Chinese))
    [5]
    GAO Y F, ZHANG N, ZHANG D Y. Effects of topographic amplification Induced by a U-Shaped canyon on seismic Waves[J]. Bulletin of the Seismological Society of America , 2012, 102: 1748-1763.
    [6]
    ZHANG N, GAO Y F,CAI Y Q. Scattering of SH waves induced by a non-symmetrical V-shaped canyon[J]. Geophysical Journal International, 2012, 191: 243-256.
    [7]
    Corine Frischknecht and Jean-Jacques Wagner. Seismic soil effect in an embanked deep alpine valley: a numerical investigation of two-dimensional resonance[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 171-186.
    [8]
    PAOLA Bordoni, FRANCESCO Del Monaco, GIULIANO Milana. The seismic response at high frequency in central l’aquila: a comparison between spectral ratios of 2D modeling and observations of the 2009 aftershocks[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1374-1388.
    [9]
    金丹丹, 陈国兴, 董菲蕃. 多地貌单元复合场地非线性地震效应特征二维分析[J]. 岩土力学, 2014, 35(6): 1818-1825. (JIN Dan-dan, CHEN Guo-xing, DONG Fei-fan. 2D analysis of nonlinear seismic effect characteristics of muti-geomorphic composite site[J]. Rock and Soil Mechanics, 2014, 35(6): 1818-1825. (in Chinese))
    [10]
    CELEBI M. Topographical and geological amplification-case studies and engineering implications[J]. Structural Safety, 1991, 10: 199-217.
    [11]
    BONILLA L F, STEIDL J H, LINDLEY G T. Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, Coda, and H/V methods[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 710-730.
    [12]
    TSUDA K, KOKETSU K, HISADA Y. Inversion analysis of site response in the Kanto basin using data from a dense strong motion seismograph array[J]. Bulletin of the Seismological Society of America, 2010, 100(3): 1276-1287.
    [13]
    王海云. 渭河盆地中土层场地对地震动的放大作用[J].地球物理学报, 2011, 54(1): 137-150. (WANG Hai-yun. Amplication effects of soil sites on ground motion in the Weihe basin[J]. Chinses Journal of Geophysics, 2011, 54(1): 137-150. (in Chinese))
    [14]
    任叶飞, 温瑞智, 山中浩明, 等. 运用广义反演法研究汶川地震场地效应[J]. 土木工程学报, 2013, 46(增刊): 146-151. (REN Ye-fei, WEN Rui-zhi, HIROAKI Yamanaka, et al. Research on site effect of Wenchuan Earthquake by using generalized inversion technique[J]. China Civil Engineering Journal, 2013, 46(S0): 146-151. (in Chinese))
    [15]
    吕悦军, 彭艳菊, 兰景岩, 等. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术, 2008, 3(2): 126-135. (LÜ Yue-jun, PENG Yan-ju, LAN Jing-yan, et al. Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention, 2008, 3(2): 126-135. (in Chinese))
    [16]
    薄景山, 李秀领, 李山有. 场地条件对地震动影响研究的若干进展[J]. 世界地震工程, 2003, 19(2): 11-15. (BO Jing-shan, LI Xiu-ling, LI Shan-you. Some progress of study on the effect of site conditions on ground motion[J]. World Earthquake Engineering, 2003, 19(2): 11-15. (in Chinese))
    [17]
    薄景山, 吴兆营, 翟庆生, 等. 三种土层结构反应谱平台值的统计分析[J]. 地震工程与工程震动, 2004, 24(2): 23-28. (BO Jing-shan, WU Zhao-ying, ZHAI Qing-sheng, et al. Statistical analysis on flat section values of response spectra in three kinds of soil layer constructions[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(2): 23-28. (in Chinese))
    [18]
    GB5011—2010建筑抗震设计规范[S]. 2010. (GB5011—2010 Code for seismic design of buildings[S]. 2010. (in Chinese))

Catalog

    Article views (345) PDF downloads (398) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return