• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TONG Chen-xi, ZHANG Sheng, LI Xi, SHENG Dai-chao. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. DOI: 10.11779/CJGE201505013
Citation: TONG Chen-xi, ZHANG Sheng, LI Xi, SHENG Dai-chao. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. DOI: 10.11779/CJGE201505013

Evolution of geotechnical materials based on Markov chain considering particle crushing

More Information
  • Received Date: August 03, 2014
  • Published Date: May 19, 2015
  • The evolution of multi-size particle materials considering particle crushing is studied considering the evolution of single-size ones. A two-parameter Weibull distribution function is introduced to describe the crushing state of single-size particles. Besides, the concept of effective breaking probability of multi-size particles is proposed. Based on these, a Markov chain model is established to describe the evolution of multi-size particles considering particle crushing. The proposed model is verified by selecting the experimental data under different geotechnical materials, test conditions and particle sizes. The results indicate that the proposed model can approximately describe the evolution of geotechnical materials considering particle crushing.
  • [1]
    LEE K L, FARHOOMAND I. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 1967, 4(1): 68-86.
    [2]
    MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43.
    [3]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [4]
    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316.
    [5]
    EINAV I. Breakage mechanics—part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297.
    [6]
    徐日庆, 畅帅, 李雪刚, 等. 基于裂离参量的粒状土颗粒破碎量化方法[J]. 岩土工程学报, 2013, 35(12): 2179-2185. (XU Ri-qing, CHANG Shuai, LI Xue-gang, et al. Quantitative method for crushing of granular soils based on discarding parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2179-2185. (in Chinese))
    [7]
    魏松, 朱俊高, 钱七虎, 等. 粗粒料颗粒破碎三轴试验研究[J]. 岩土工程学报, 2009, 31(4): 533-538. (WEI Song, ZHU Jun-gao, QIAN Qi-hu, et al. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538. (in Chinese))
    [8]
    傅华, 凌华, 蔡正银. 粗颗粒土颗粒破碎影响因素试验研究[J]. 河海大学学报 (自然科学版), 2009, 37(1): 75-79. (FU Hua, LING Hua, CAI Zheng-yin. Influencing factors for particle breaking of coarse grained soil[J]. Journal of Hohai University (Natural Sciences), 2009, 37(1):75-79. (in Chinese))
    [9]
    郭熙灵, 胡辉, 包承纲. 堆石料颗粒破碎对剪胀性及抗剪强度的影响[J]. 岩土工程学报, 1997, 19(3): 83-88. (GUO Xi-ling, HU Hui, BAO Cheng-gang. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rockfill[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 83-88. (in Chinese))
    [10]
    陈生水, 韩华强, 傅华. 循环荷载下堆石料应力变形特性研究[J]. 岩土工程学报, 2010, 32(8): 1151-1157. (CHEN Sheng-shui, HAN Hua-qiang, FU Hua. Stress and deformation behaviors of rockfill under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1151-1157. (in Chinese))
    [11]
    姚仰平, 万征, 陈生水. 考虑颗粒破碎的动力UH模型[J]. 岩土工程学报, 2011, 33(7): 1036-1044. (YAO Yang-ping, WAN Zheng, CHEN Sheng-shui. Dynamic UH model considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1036-1044. (in Chinese))
    [12]
    KWOK C Y, BOLTON M D. DEM simulations of soil creep due to particle crushing[J]. Géotechnique, 2013, 63(16): 1365-1376.
    [13]
    史旦达, 周建, 贾敏才, 等. 考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J]. 岩土工程学报, 2007, 29(5): 736-742. (SHI Dan-da, ZHOU Jian, JIA Min-cai, et al. Numerical simulations of particle breakage property ofsand under high pressure 1D compression condition by use of particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742. (in Chinese))
    [14]
    BARD E. Comportement des matériaux granulaires secs et à liant hydrocarbone[D]. Paris: Ecole Cenlrale de Paris, 1993. (BARDS E. Behavior of dry and hydrocarbon binder granular malerials[D]. Paris: Ecole Centrale de Paris, 1993. (in French))
    [15]
    NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82.
    [16]
    MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145.
    [17]
    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
    [18]
    张季如, 祝杰, 黄文竞. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J].岩土工程学报, 2008, 30(6): 783-789. (ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing, et al. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese))
    [19]
    ZHANG B Y, JIE Y X, KONG D Z. Particle size distribution and relative breakage for a cement ellipsoid aggregate[J]. Computers and Geotechnics, 2013, 53: 31-39.
    [20]
    黄俊宇, 徐松林, 王道荣, 等. 脆性颗粒材料的动态多尺度模型研究[J]. 岩土力学, 2013, 34(4): 922-932. (HUANG Jun-yu, XU Song-lin, WANG Dao-rong, et al. Investigation on dynamic multiscale model for brittle granular materials[J]. Rock and Soil Mechanics, 2013, 34(4): 922-932. (in Chinese))
    [21]
    孙逸飞, 刘汉龙, 杨贵. 考虑颗粒破碎引起级配演变的粗粒料屈服函数研究[J]. 岩土力学, 2013, 34(12): 3479-3484. (SUN Yi-fei, LIU Han-long, YANG Gui. Yielding function for coarse aggregates considering gradation evolution induced by particle breakage[J]. Rock and Soil Mechanics, 2013, 34(12): 3479-3484. (in Chinese))
    [22]
    LACKENBY J, INDRARATNA B, MCDOWELL G, et al. Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading[J]. Géotechnique, 2007, 57(6): 527-536.
    [23]
    CHUHAN F A, KJELDSTAD A, BJØRLYKKE K, et al. Porosity loss in sand by grain crushing-Experimental evidence and relevance to reservoir quality[J]. Marine and Petroleum Geology, 2002, 19(1): 39-53.
    [24]
    KARIMPOUR H, LADE P V. Time effects relate to crushing in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1209-1219.
    [25]
    OZKAN G, ORTOLEVA P J. Evolution of the gouge particle size distribution: A Markov model[J]. Pure and Applied Geophysics, 2000, 157(3): 449-468.
    [26]
    LOBO-GUERRERO S, VALLEJO L E. Application of Weibull statistics to the tensile strength of rock aggregates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 786-790.
    [27]
    刘瑜, 周甲伟, 杜长龙. 基于分形统计强度理论的煤颗粒冲击破碎概率研究[J].固体力学学报, 2012, 33(6): 631-636.(LIU Yu, ZHOU Jia-wei, DU Chang-long. Impact crushing probability of coal particles based on fractal statistical strength theory[J]. Chinese Journal of Soild Mechanics, 2012, 33(6): 631-636. (in Chinese))
    [28]
    MAYORAZ F, VULLIET L, LALOUI L. Attrition and particle breakage under monotonic and cyclic loading[J]. Comptes Rendus Mécanique, 2006, 334(1): 1-7.

Catalog

    Article views (355) PDF downloads (311) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return