• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YUAN Hai-ping, HAN Zhi-yong, LIN Hang, WANG Bin, CHEN Shui-mei. Rebound effect of rock & soil excavation based on M-C elastic-plastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 24-29. DOI: 10.11779/CJGE2014S2005
Citation: YUAN Hai-ping, HAN Zhi-yong, LIN Hang, WANG Bin, CHEN Shui-mei. Rebound effect of rock & soil excavation based on M-C elastic-plastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 24-29. DOI: 10.11779/CJGE2014S2005

Rebound effect of rock & soil excavation based on M-C elastic-plastic constitutive model

  • In view of the rebound phenomenon in numerical simulation calculation of rock & soil excavation, based on the M-C elastic-plastic constitutive model, the rebound effect is studied during the excavation process of a foundation pit. The mechanical mechanism and the sensitivity of the mechanical parameters for the rebound effect in rock mass constitutive model are analyzed. Besides, the solution to the rebound in numerical simulation of excavation is explored. The research results show that the effect of parameters in the M-C constitutive model on the rebound is as follows: (1) The impact of geotechnical gravity density on rebound of general rock mass excavation is relatively sensitive, and the effect on the bottom is far more significant than that on the surface. (2) The effect of Poisson's ratio on rebound displacement of excavating rock & soil is also obvious. (3) When the ratio of reduction is small, the sensitivity of elastic modulus and cohesive force is prominent. The effect on the bottom and the surface is significant on the whole. (4) However, the internal friction angle of rock and soil basically has no effect on the bound deformation. This study may provide reference for the design of excavation of foundation pits and rebound prediction.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return