• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Jing-hong, ZHOU Chun-hui, JIANG Hong-tao, SU Jing-wen, JIANG Yue-hua, LIU Chun, SHI Bin. Physical properties of Quaternary sediment and land subsidence life process in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1745-1753. DOI: 10.11779/CJGE201409023
Citation: WU Jing-hong, ZHOU Chun-hui, JIANG Hong-tao, SU Jing-wen, JIANG Yue-hua, LIU Chun, SHI Bin. Physical properties of Quaternary sediment and land subsidence life process in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1745-1753. DOI: 10.11779/CJGE201409023

Physical properties of Quaternary sediment and land subsidence life process in Suzhou

More Information
  • Received Date: November 21, 2013
  • Published Date: September 21, 2014
  • Land subsidence is the most critical geological problem in Suzhou area, which influences the development of economy. Based on the analysis of 200 m-drilling core in Shengze, Suzhou, the Quaternary stratum in Suzhou subsidence area is divided into three confined aquifer groups, and the precise columnar section of the borehole is drawn. The variation rules of physical properties of soils and structure with the increasing depth are studied on the basis of a large number of soil sample tests and macro-microstructure analysis. The relationship among compressive deformation of clay layer, microstructure and land subsidence is analyzed. Finally, an evaluation method for soil layer compression is proposed using the indices of Ecl and Esa. The results show that the moisture content, porosity and compressibility of soils get smaller and the microstructure orientation becomes more clearly with the increase of depth. The potential of stratum compression shows a tendency: the upper confining beds of the first and second confined aquifers > the upper confining beds of the third confined aquifer> both top and bottom aquitards of the third confined aquifer. The water-bearing sand layer of the second confined aquifer has a great potential while that of the second confined aquifer has become stable. This research is significant for studying the development mechanism of Quaternary strata in Suzhou land subsidence area and for the assessment of subsidence life process.
  • [1]
    丘 铮. 苏州区域性地面沉降及环境问题[J]. 环境保护, 1992, 10: 35-36. (QIU Zheng. Suzhou regional land subsidence and environmental problems[J]. Environmental Protection, 1992, 10: 35-36. (in Chinese))
    [2]
    姜洪涛, 王富葆, 杨达源. 苏州市晚第四纪古地理与工程地质条件研究[J]. 地理科学, 2003, 23(1): 82-86. (JIANG Hong-tao, WANG Fu-bao, YANG Da-yuan. A study on paleo-geography of late quaternary and engineering geological condition of Suzhou urban district[J]. Scientia Geographica Sinica, 2003, 23(1): 82-86. (in Chinese))
    [3]
    姜洪涛, 施 斌. 苏州城区浅地层的工程地质性质研究[J]. 水文地质工程地质, 1995, 22(3): 35-37. (JIANG Hong-tao, SHI Bin. Study on the engineering geological properties of shallow layer in Suzhou city[J]. Hydrogeology and Engineering Geology, 1995, 22(3): 35-37. (in Chinese))
    [4]
    李从先, 范代读, 张家强. 长江三角洲地区晚第四纪地层及潜在环境问题[J]. 海洋地质与第四纪地质, 2000, 20(3): 1-6. (LI Cong-xian, FANG Dai-du, ZHANG Jia-qiang. Late quaternary stratigraphical framework and potential environmental problems in the Yangtze Delta area[J]. Marine Geology & Quaternary Geology, 2000, 20(3): 1-6. (in Chinese))
    [5]
    AMELUNG F, GALLOWAY D L, BELL J W, et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6): 483-486.
    [6]
    LARSON K J, BAŞAAOLU H, MARINO M A. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model[J]. Journal of Hydrology, 2001, 242(1): 79-102.
    [7]
    KONIKOW L F, KENDY E. Groundwater depletion: a global problem[J]. Hydrogeology Journal, 2005, 13(1): 317-320.
    [8]
    李勤奋, 方 正, 王寒梅.上海市地下水可开采量模型计算及预测[J]. 上海地质, 2000(2): 36-43. (LI Qin-fen, FANG Zheng, WANG Han-mei. A mathematical model and forecast of groundwater workable reserves for Shanghai[J]. Shanghai Geology, 2000(2): 36-43. (in Chinese))
    [9]
    吴铁钧, 金东锡. 天津地面沉降防治措施及效果[J]. 中国地质灾害与防治学报, 1998, 9(2): 6-12. (WU Tie-jun, JIN Dong-xi. Elementary description of control measures on land subsidence prevention and its effectiveness in Tianjin City[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(2): 6-12. (in Chinese))
    [10]
    晏同珍. 地面沉降规律预测新模式[J]. 地球科学-中国地质大学学报, 1989, 14(2): 181-188. (YAN Tong-zhen. New mode of forecasting land subsidence regularity[J]. Earth Science-Journal of China University of Geosciences, 1989, 14(2): 181-188. (in Chinese))
    [11]
    王光亚, 施 斌, 于 军. 常州地面沉降的灰色Verhulst预测[J]. 水文地质工程地质, 2006(6): 80-83. (WANG Guang-ya, SHI Bin, YU Jun. Grey verhulst prediction model and its application in land subsidence in Changzhou[J]. Hydrogeology and Engineering Geology, 2006(6): 80-83. (in Chinese))
    [12]
    袁 铭, 严 勇. 苏州市地面沉降现状分析[J]. 自然灾害学报, 2010(1): 127-131. (YUAN Ming, YAN Yong. Status quo analysis of ground subsidence in Suzhou City[J]. Journal of Natural Disasters, 2010(1): 127-131. (in Chinese))
    [13]
    江苏省国土资源厅. 苏锡常地面沉降监测年报[R]. 南京: 江苏省国土资源厅, 2007. (Jiangsu Provincial Department of land and Resources. Land subsidence mornitoring report of Su-Xi-Chang area[R]. Nanjing: Jiangsu Provincial Department of land and Resources, 2007. (in Chinese))
    [14]
    姜洪涛. 苏锡常地区地面沉降及其若干问题探讨[J]. 第四系研究, 2005, 25(1): 29-33. (JIANG Hong-tao. Problems and discussions in the study of land subsidence in the Suzhou-Wuxi-Changzhou area[J].Quaternary Sciences, 2005, 25(1): 29-33. (in Chinese))
    [15]
    阎世骏. 黏性土结构与地面沉降[C]// 全国第三次工程地质大会论文选集 (上卷). 成都, 1988. (YAN Shi-jun. Clayed soil structure and land subsidence[C]// The Third Engineering Geological Conference Papers Anthology (Volume 1). Chengdu, 1988. (in Chinese))
    [16]
    LIU C, SHI B, ZHOU J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
    [17]
    LIU C, TANG C, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers and Geosciences, 2013, 57: 77-80.
    [18]
    王常明. 海积软土微观结构定量化及固结模型研究[D]. 长春: 科技大学, 1999.(WANG Chang-ming. The quantitative analysis of marine soft soil microstructure and consolidation model[D]. Changchun: University of Science and Technology, 1999. (in Chinese))
    [19]
    陈嘉鸥, 叶 斌, 郭素杰. 珠江三角洲黏性土微结构与工程性质初探[J]. 岩石力学与工程学报, 2000, 19(5): 674-678. (CHEN Jia-ou, YE Bin, GUO Su-jie. Primary exploration engineering properties of soft ground microstructure in Zhujing Delata[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 674-678. (in Chinese))
    [20]
    施斌. 黏性土微观结构定向性的定量研究[J].地质学报, 1997, 71(1): 36-43. (SHI Bin. Quantitative research on the orientation of microstauctures of clayey soil[J]. ACTA Geologica Sinica, 1997, 71(1): 36-43. (in Chinese))
    [21]
    施小清, 薛禹群, 吴吉春, 等. 常州地区含水层系统土层压缩变形特征研究[J]. 水文地质工程地质, 2006, 33(3): 1-6. (SHI Xiao-qing, XUE Yu-qun, WU Ji-chun, et al. A study of soil deformation properties of the groundwater system in the Changzhou area[J]. Hydrogeology and Engineering Geology, 2006, 33(3): 1-6. (in Chinese))
    [22]
    武 强, 谢海澜, 赵增敏, 等. 弱透水层变形机理的研究[J]. 北京科技大学学报, 2006, 3(3): 64. (WU Qiang, XIE Hai-lan, ZHAO Zeng-min, et al. Study on deformation mechanics of aquitard[J]. Journal of University of Science and Technology Beijing, 2006, 3(3): 64. (in Chinese))
    [23]
    唐大雄, 孙素文. 工程岩土学[M]. 北京: 地质出版社, 1987. (TANG Da-xiong, SUN Su-wen. Rock and soil engineering[M]. Beijing: Geological Publishing House, 1987. (in Chinese))
    [24]
    何美临. 上海市区浅层土黏土矿物、微结构与地面沉降[J]. 上海地质, 1989, 4: 31-40.(HE Mei-lin. The clay minerals and textures of shallow soil related with land surface settlement in Shanghai city proper[J]. Shanghai Geology, 1989, 4: 31-40. (in Chinese))
    [25]
    伍洲云, 余 勤, 张 云. 苏锡常地区地裂缝形成过程[J].水文地质工程地质, 2003(1): 68-73. (WU Zhou-yun, YU Qin, ZHANG Yun. Forming process of earth fissure hazard in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology and Engineering Geology, 2003(1): 68-73. (in Chinese))
    [26]
    王光亚, 于 军, 吴曙亮, 等. 常州地区地面沉降及地层压缩性研究[J]. 地质与勘探, 2009, 45(5): 612-620. (WANG Guang-ya, YU Jun, WU Shu-liang, et al. Land subsidence and compression of soil layers in Changzhou area[J]. Geology and Prospecting, 2009, 45(5): 612-620. (in Chinese))
  • Cited by

    Periodical cited type(7)

    1. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
    2. 康佐,亢佳伟,邓国华. 欠压密饱和黄土基本物理力学性质研究. 岩土力学. 2023(11): 3117-3127 .
    3. 刘广煜,徐文杰,周乾,冯泽康. 基于块体离散元法的多面体接触重叠算法. 计算力学学报. 2022(03): 265-272 .
    4. 李涛,蒋明镜,李立青. 非饱和重塑黄土应变控制等应力比试验三维离散元分析. 水利与建筑工程学报. 2021(02): 36-41 .
    5. 蒋明镜,王优群,卢国文,张鹏. 非饱和重塑与结构性黄土平面应变试验三维离散元模拟. 水利与建筑工程学报. 2021(02): 1-5+18 .
    6. 韦雅之,姚志华,种小雷,张建华. 非饱和Q_3黄土微细观结构特征及对强度特性影响机制. 岩土工程学报. 2021(11): 2127-2133 . 本站查看
    7. 李涛,蒋明镜,孙若晗. 多种应力路径下结构性土胶结破损演化规律离散元分析. 岩土工程学报. 2020(06): 1159-1166 . 本站查看

    Other cited types(11)

Catalog

    Article views (332) PDF downloads (405) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return