兰州市某深基坑支护设计及监测研究分析

任永忠^{1,2},朱彦鹏^{1,2},周 勇^{1,2}

(1. 兰州理工大学甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 2. 兰州理工大学西部土木工程防灾减灾

教育部工程研究中心,甘肃 兰州 730050)

摘 要: 以兰州市庙滩子某一深基坑工程为背景,论述了排桩预应力锚杆在深基坑工程中的设计要点,同时对施工过 程中桩顶及桩身位移进行了实时监测,并且利用有限元软件 PLAXIS,采用 HSS 土体本构模型对此工程进行了数值验 证。监测及数值模拟分析表明:采用排桩预应力锚杆支护,深基坑的开挖对邻近建筑物影响很小,此支护形式能够有 效的限制基坑的侧向位移,同时数值模拟结果与监测数据基本吻合,表明 HSS 土体本构模型较适合含有卵石、泥岩地 质条件下的数值分析。

关键词: 深基坑; 支护设计; 排桩预应力锚杆; 监测分析; 数值模拟

中图分类号: TU476 **文献标识码:** A **文章编号:** 1000 - 4548(2012)S0 - 0705 - 06 **作者简介:** 任永忠(1986 -), 男, 甘肃平凉人, 博士研究生, 主要从事黄土地区柔性支挡结构及滑坡泥石流的分析与 研究。E-mail: renyz518@qq.com。

Design and monitoring of bracings for a deep foundation pit in Lanzhou

REN Yong-zhong^{1, 2}, ZHU Yan-peng^{1, 2}, ZHOU Yong^{1, 2}

(1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology,

Lanzhou 730050, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education,

Lanzhou University of Technology, Lanzhou, 730050, China)

Abstract: Taking a deep foundation pit in Miaotanzi, Lanzhou as are example, the design highlights of pile-prestressed anchor in deep excavations are discussed, and real-time monitoring of pile displacements of top and piles during the process of construction is carried out. By using the finite element software PLAXIS, HSS soil constitutive model is adopted for numerical verification. The monitoring and numerical simulation analysis show that supported by the pile-prestressed anchor, excavation of deep foundation pit has little effect on the adjacent buildings. This kind of bracing can effectively limit the lateral displacement of deep foundation pit. The numerical results agree with the monitoring data. The HSS soil constitutive model is more suitable for numerical analysis of foundations containing pebbles and mudstone geological conditions.

Key words: deep foundation pit; bracing design; pile-prestressed anchor; monitoring analysis; numerical simulation

0 引 言

对深基坑在排桩预应力锚杆支护下各种特性的认 识基础上,同时针对兰州地区排桩预应力锚杆的实际 工程的应用来看,设计者一般更为关心的是深基坑在 排桩预应力锚杆支护下开挖对周围环境的影响以及排 桩预应力锚杆的设计,吴文等^[1]研究了深基坑桩锚支 护结构受力和变形特性,考虑了桩锚土的相互作用, 马平、秦四清等^[2]研究分析了在深大基坑开挖过程中 桩锚支护体系的受力特性,得出了主动区土压力随开 挖进程发展而变化的分布规律,时伟等^[3]分析了在深 基坑开挖过程中桩锚支护体系的受力特性,得出了支 护桩与桩侧土体的水平位移随开挖工况而变化的分布 规律,然而以上基坑开挖深度均小于周围建筑物桩基 深度。本文以兰州市庙滩子旋转车道深基坑为例,此 基坑开挖的坑底标高比邻近建筑物([#]9 楼)最深桩基 础底面标高要低约 4.6 m,通过本文的研究,以期得 到在此类工况条件下采用桩锚支护的基坑开挖对周围 环境的影响,为后续研究提供一定的依据。

1 工程概况

拟建旋转车道位于兰州市庙滩子旧城改造工程#7

基金项目:国家自然科学基金项目(50978129) 收稿日期:2012 - 08 - 24

楼和[#]8 楼之间,沿[#]9 楼绕过,呈圆弧线型,现[#]7 楼待 建,[#]8 楼和[#]9 楼目前在建,其中[#]8 楼正在进行主体施 工,[#]9 楼已封顶,其基础采用桩筏联合基础,靠近旋 转车道一侧的桩长为 11.0 m,旋转车道距[#]9 楼基础桩 顶筏板边界最近距离仅有 6.1 m左右,筏板厚度 1.2 m, 旋转车道基坑开挖深度 15.6 m。基坑开挖的坑底标高 比[#]9 楼最深桩基础底面标高要低约 4.6 m,因此基坑 开挖的稳定性对[#]9 楼的安全有重要影响,依据《建筑 基坑支护技术规程》(JGJ 120—99)^[4]和《湿陷性黄 土地区建筑基坑工程安全技术规程》(JGJ 167—2009) ^[5],该深基坑支护工程的安全等级确定为一级,在开 挖过程中需考虑采取支护措施以保证[#]9 楼的安全,基 坑和周围在建和拟建建筑物的关系见图 1。

图 1 旋转车道基坑与周边环境的平面位置 Fig. 1 Plan of rotating lane pit and adjacent environment

2 工程地质条件及水文地质条件

2.1 工程地质条件

在基坑支护设计深度范围内,根据土层的岩性特 征及物理力学性质的差异,将场地地层分为4个主层, 分别是:①杂填土:第四系人工堆积物,层厚为0.2~ 4.4 m,杂色,结构杂乱,主要有碎砖、混凝土块等建 筑垃圾组成,含量为75%左右,含有20%左右的粉土, 另含少量生活垃圾,稍湿,松散。②黄土状粉土:第 四系冲洪积物,层厚为1.1~22.0 m,黄褐色,土质较 均匀,摇振反应迅速,干强度低,韧性低,无光泽, 局部夹有薄层黏土或透镜状砾石层,稍湿,稍密。③ 卵石:第四系冲洪积物,揭露层厚为4.4~10.4 m。青 灰色,最大粒径为40 cm左右,一般粒径为4~8 cm, 粒径大于2 cm的颗粒质量占总质量的60%左右,母 岩成分以石英岩、花岗岩、砂岩为主,充填物以中粗 砂为主,含量为30%左右,偶含漂石,局部夹薄层中 砂,中密一密实。④砂岩:第四系冲洪积物,层厚为 1.0 m。青灰色,砂质较纯,粒径大于 0.25 mm 的颗粒 质量占总质量的 65%左右,矿物成分主要为石英、长 石,另含少量云母,稍湿,稍密。

2.2 水文地质条件

该场地内地下水为孔隙潜水,主要赋存于卵石层 中,接受大气降水的补给,受补给源的影响,水位随 季节变化,年波动幅度在 0.5~1.5 m 左右,局部地段 由于受临近场地(相距约 80 m)人工降水的影响,水 位波动幅度较大。勘察期间(2010 年 5~6 月)地下 水的埋深为 9.5~27.6 m。根据邻近[#]8 建筑物基坑开挖 的情况分析,旋转车道位置的基坑开挖不需要考虑地 下水的影响。

3 基坑支护设计

3.1 基坑支护设计方案的确定^[6-7]

针对本基坑工程,具体支护方案分析如下:该基 坑北侧、东侧和南侧分别距[#]10、[#]7和[#]8住宅楼位置 处较远,同时[#]10住宅楼和[#]7住宅楼均未建,基坑南 侧[#]8住宅楼正建,但是[#]8住宅楼基础为桩筏基础,桩 基底面比基坑底面低5m左右,因此对该基坑的开挖 无影响,但是基坑西侧距已封顶建筑[#]9楼最近距离仅 有6.1m,基坑在开挖支护过程中不允许有较大变形, 其变形应该在可控范围内,考虑到基坑深度大,排桩 预应力锚杆对基坑变形控制作用明显,因此采用多支 点排桩预应力锚杆进行支护,基坑支护平面图如图 2 所示。

图 2 旋转车道基坑支护设计平面图

Fig. 2 Plan of bracings for rotating lane pit

3.2 排桩预应力锚杆支护结构设计

(1) 设计依据和设计参数

基坑开挖设计深度为 15.6 m, 根据甲方提供的"[#]9 楼与旋转车道的平面位置关系图纸"和"岩土工程勘 察报告", 在开挖深度范围内土层主要有①杂填土、② 黄土状粉土层、③卵石层、④砂岩层, (最上部的杂填 土已经挖除)因此基坑土体物理参数取值见表 1。

Table 1 Physical and mechanical parameters of soil layers 内摩 界面黏 土层平 黏聚 重度 土层 擦角 均厚度 结强度 力 $\gamma / (kN \cdot m^{-3})$ 名称 $\varphi/(^{\circ})$ τ /kPa /mc/kPa ①杂填 0.5 16.8 15.0 22 30 土 ②粉土 7.5 16.8 18.0 25 60 ③卵石 7.2 20.0 0 200 38 ④砂岩 22.5 16.4 32.0 28 160

表1 土层的基本物理参数

(2) 排桩设计计算

排桩采用冲击成孔钢筋混凝土灌注桩,桩径采用 1000 mm,依据*9 楼基础桩的桩间距来确定排桩的间 距,否则锚杆进入*9 楼基础桩时会发生碰撞,实际桩 间距取 2.6 m,桩嵌入坑底长度经计算确定,桩身混 凝土强度为 C25。排桩顶设冠梁,冠梁截面尺寸为1000 mm×600 mm,以加强整体性。为严格控制基坑的位移 及保证基坑的安全性,基坑采用3 道预应力锚杆,第 一排锚杆离冠梁顶面 1.8 m,第二排锚杆距离第一排 锚杆 2.5 m,第三排锚杆距离第二排锚杆 2.5 m,同时 在桩间土中打入2 m 22 的钢筋土钉,间距为1.3 m, 平面呈梅花形,此土钉不参与结构设计,仅仅是为了 保证桩间土在基坑开挖过程中不局部塌落,具体布置 图见图 3。

图 3 排桩预应力锚杆支护立面图

Fig. 3 Elevation of pile-prestressed anchor structure

a) 排桩的嵌固深度计算

支护排桩嵌固深度具体计算可按《建筑基坑支护 技术规程》JGJ(120—99)进行。首先计算[#]9 楼建筑 物超载,考虑基坑边缘与[#]9 楼外墙的水平距离,[#]9 楼 超载会产生一定的应力扩散,实际计算得超载设计值 约为 $q=50 \text{ kN/m}^2$,经计算,求得嵌固深度 x=5.8 m, 取嵌固深度 $h_d=6.4 \text{ m}$ 。

b) 排桩配筋计算

经计算桩身最大弯矩设计值为 872 kN·m,依据 《建筑基坑支护技术规程》(JGJ120—99)附录 D 和 《混凝土结构设计规范》(GB 50010—2010)^[8]关于圆 形 截 面 的 相 关 配 筋 计 算 公 式 和 构 造 要 求 ,结 合 MATLAB 语言自编程序,支护桩设计如下:桩的保护 层厚度取 50 mm,桩身混凝土强度等级 C25,桩身纵 筋采用 HRB400 级钢筋,经过计算桩身所需配筋面积 为 $A_s = 6059 \text{ mm}^2$,挡土侧和临空侧对称配筋,实配 20 Φ 20,面积 $A_s = 6280 \text{ mm}^2$,配筋率 $\rho = 0.8\% < 5\%$, 满足要求。

c) 排桩桩顶水平位移估算^[9]

取锚杆预应力设计值 150 kN,依据《湿陷性黄土 地区建筑基坑工程安全技术规程》(JGJ167—2009), 当基坑侧壁安全等级为一级时,支护结构安全使用最 大水平位移限值为 0.0025*h*,此处 *h* 为基坑开挖深度, 因此该支护结构桩顶最大水平位移限值为 39 mm。

考虑预应力锚杆的预应力损失后,估算出排桩预 应力锚杆支护结构的桩顶水平位移,其计算结果见表 2。由表2可见,估算出的桩顶水平位移满足该支护结 构桩顶最大水平位移限值的要求,说明预应力锚杆很 好地限制了基坑侧壁的水平位移。

(3) 锚杆设计计算

依据《建筑边坡工程技术规范》(GB50330—2002) ^[10]中相应的计算公式,且锚杆材料选用 HRB400 级钢 筋,可得锚杆的设计计算结果见表 3,排桩预应力锚 杆剖面图见图 4。

4 数值模拟及监测结果分析

4.1 计算模型

采用通用岩土工程有限元软件 PLAXIS 对排桩预 应力锚杆支护进行模拟分析,该程序广泛用于岩土工 程的应力 - 应变、渗流分析及固结分析等领域^[11]。

表 2	排桩桩顶水半位移估算	

Table 2 Estimated horizontal displacements of pile top	
--	--

锚杆的 序号和	锚杆自	水平支	张拉控制	锚杆主	要分项预应 /MPa	力损失	总预应力	锚杆预	水平	桩顶水平
所对应 开挖步	田段长 度 <i>l</i> _f /m	点力 T/kN	$\sigma_{\rm con}/{\rm MPa}$	锚具回 缩 σ 1	应力松 弛 σ ₄	锚固体 蠕变 σ _в	损失 σ _l /MPa	拉力 f_p/kN δ	位移 δ/mm	位移 位移 δ/mm Δ/mm
第1排	8.0	212.32	350.11	50.00	10.50	70.02	130.52	135.22	5.1	
第2排	6.5	191.83	316.32	61.54	9.49	63.26	134.29	112.09	4.3	18.2<39
第3排	5.0	347.55	342.21	80.00	10.27	68.44	158.71	186.62	4.0	

表 3 锚杆的设计计算结果

Table 3 Calculated results of anchor						
锚杆排号	1	2	3			
支点反力/kN	424.64	191.83	695.09			
锚杆水平倾角α/(°)	10	10	3			
锚杆截面计算面积 A _s /mm ²	1197.8	541.1	1933.5			
实际选用钢筋	2@28	1@28	2\$236			
锚杆实际截面面积 A _s /mm ²	1231.6	615.8	2034			
锚固段长度 Le/m	11	10	13			
自由段长度 L _f /m	8.0	6.5	5.0			
锚杆总长 L/m	19.0	16.5	18.0			

Fig. 4 Section of pile-prestressed anchor

土体采用 HSS 土体硬化模型; 土钉采用土工格栅 单元,此单元是具有轴向刚度而无弯曲刚度的细长形 结构;锚杆自由段采用点对点锚杆单元,它具有两个 节点,此单元既可以承受拉力也可以受压;锚杆锚固 段采用与土钉类似的单元;土体与结构物之间的界面 用界面单元来处理,通过给界面选取合适的界面强度 折减因子来模拟土体强度与界面强度之间的关系,排 桩可视为土体被加固,按加固后的土体取值,选用莫 尔 - 库仑模型来等效模拟。本工程看做平面应变问题, 模型的尺寸为 90 m×70 m,模型底部为固定约束,侧 面只限制水平位移,上表面为自由边界,具体计算模 型见图 5 及有限元划分网格见图 6,计算模型土体参 数见表 4。此有限元模型共划分了 1021 个单元,节点 数为 8464,应力点数为 12252,以满足供分析的要求。

4.2 数值模拟结果与分析

(1) 基坑总变形量分析

图 7 给出了基坑总变形的矢量图,从图中可以看 出,由于坑内开挖的卸载,基坑底部土体发生隆起, 最大的隆起量为 28.95 mm,由于第 3 排锚杆距坑底距 离为 8.8 m,此区段竖向间距较大,同时此范围内均 为卵石层,因此排桩的最大水平发生在此区间之内, 最大水平位移为 55.99 mm,从水平位移的大小来看, 锚杆的设置有效的控制了水平位移的发展。

表 4 计算模型土体参数

Table 4 Soil parameters of calculation model

fuore i bon parameters of carculation model							
土层	杂填土	粉 土	卵 石	砂岩			
$\gamma_{unsat}/(10^4 \mathrm{kN}\cdot\mathrm{m}^{-3})$	16.8	16.8	20.0	22.5			
$E_{50}^{\rm ref} / (10^4 {\rm kN \cdot m^{-2}})$	1.45	1.68	4.0	4.50			
$E_{\rm oed}^{\rm ref}$ /(10 ⁴ kN·m ⁻²)	1.45	1.68	4.0	4.50			
$c_{\rm ref}/(10^4 {\rm kN}{\cdot}{\rm m}^{-2})$	15.0	18.0	0.3	32.0			
$arphi_{ m (phi)}/(^\circ$)	22.0	25.0	38.0	28.0			
$E_{\rm ur}^{\rm ref} / (10^4 {\rm kN \cdot m^{-2}})$	4.35	5.04	12.0	13.5			
${m u}_{ m ur}^{ m (nu)}$	0.2	0.2	0.2	0.2			
Interface permeability	Neutral	Neutral	Neutral	Neutral			

(2) 桩身水平位移分析

图 8 给出了随着桩身长度的变化,桩身水平位移 变化曲线,从曲线中可得,通过数值模拟分析得到的 桩身最大水平位移计算值为 55.99 mm,而监测值为 50.57 mm,相比之下,稍微有点误差,但是能说明桩 身侧向位移的变化机理,同时也验证了 HSS 土体本构 模型能较好地反映含有卵石的地层特性。从工程的实施情况来看,锚杆位置能有效地限制桩身水平位移。

图 7 基坑总变形矢量图

Fig. 7 Vectorgraph of total deformation of pit

图 8 桩身水平位移曲线

Fig. 8 Horizontal displacement curves of pile body

(3) 桩顶水平位移分析

图 9 给出了桩顶随时间变化的水平位移曲线,从 曲线中可得,桩顶最大水平位移的计算值为 20.51 mm,而监测数值为 19.4 mm,说明排桩预应力锚杆支 护结构在对有侧向位移限制的工程中有较好的适用 性,同时从 2011 年 11 月 6 日监测数据可以看出,桩 顶水平位移出现了突变,这主要是因为预应力锚杆发 挥的作用,从曲线的变化趋势去看,计算数据与监测 点数据一致性较好,因此通过数值模拟在一定程度上 能预测工程中某些参数的变化趋势,进一步保证工程 的安全性和经济性。

Fig. 9 Horizontal displacement curves of pile top

5 结 论

本文以兰州市庙滩子旋转车道深基坑工程为例, 论述了排桩预应力锚杆在深基坑工程中的设计要点, 同时对桩顶及桩身位移进行了实时监测,并采用数值 分析进行了验证,通过监测及数值分析可得以下4点 结论。

(1)在排桩预应力锚杆支护下的深基坑的开挖对 周围环境影响很小,本文中基坑开挖的坑底标高比邻 近建筑物([#]9 楼)最深桩基础底面标高要低约4.6 m, 但是从监测和计算的数据来看,桩顶的侧向位移很小。

(2) 在本文数值模拟中, 土体的本构关系采用的 是 HSS 本构关系, 从计算数据和监测数据的一致性来 看, 此本构关系能较适合卵石、砂岩地层, 是针对此 类地层数值计算中较为理想的高级本构模型。

(3)由于深基坑施工过程中有明显的空间效应和 时间效应,但是本文的计算模型是平面应变,未考虑 此类效应,因此有待于更深入三维模型的研究与分析。

(4) 在本工程中,由于卵石的存在限制了锚杆的 施工,使得锚杆的设置靠近基坑顶面处,在卵石地层 中未设置锚杆出现桩身位移较大的现象,因此对于锚 杆在卵石层中的施工工艺有待于进一步研究。

参考文献:

- [1] 吴 文, 徐松林, 周劲松, 等. 深基坑桩锚支护结构受力和 变形特性研究[J]. 岩石力学与工程学报, 2001, 20(3): 399 - 402. (WU Wen, XU Song-lin, ZHOU Jin-song, et al. Studies of force and deformation properties considering pile-anchor-soil interaction in deep pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(3): 399 - 402. (in Chinese))
- [2] 马 平,秦四清,张 勇,等. 深基坑桩锚支护体系主动区 土压力试验研究[J]. 工程地质学报, 2006, 14(2): 245 - 248.
 (MA Ping, QIN Si-qing, ZHANG Yong, et al. In-situ test on active earth pressure zone in piles and anchors supporting system for deep foundation pit[J]. Journal of Engineering Geology, 2006, 14(02): 245 - 248. (in Chinese))
- [3] 时 伟,刘继明,章 伟. 深基坑桩锚支护体系水平位移 试验研究[J]. 岩石力学与工程学报, 2003, 22(增刊 1): 2355 - 2358. (SHI Wei, LIU Ji-ming, ZHANG Wei. Testing study on horizontal displacement of anchor-pile bracing structure for deep foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2355 - 2358. (in Chinese))

[4] JGJ 120—99 建筑基坑支护技术规程[S]. 北京: 中国建筑

工业出版社, 1999. (JGJ 120—99 Technical specification for retaining and protection of building foundation excavation[S]. Beijing: China Architecture and Building Press, 1999. (in Chinese))

- [5] JGJ 167—2009 湿陷性黄土地区建筑基坑工程安全技术规程
 [S]. 北京:中国建筑工业出版社, 2009. JGJ 167—2009 Technical specifications for safe retaining and protection of building foundation excavation engineering in collapsible loess regions[S]. Beijing: China Architecture and Building Press, 2009. (in Chinese))
- [6] 陈肇元,崔京浩. 土钉支护在基坑工程中的应用[M]. 2 版. 北京:中国建筑工业出版社, 2000. (CHEN Zhao-yuan, CUI Jing-hao. Application of soil nailing in excavation engineering[M]. 2nd ed. Beijing: China Architecture and Building Press, 2000. (in Chinese)).
- [7] 朱彦鹏, 王秀丽, 周 勇. 支挡结构设计计算手册[M]. 北京: 中国建筑工业出版社, 2008. (ZHU Yan-peng, WANG Xiu-li, ZHOU Yong. Retaining structure design and

calculating instructions[M]. Beijing: China Architecture and Building Press, 2008. (in Chinese))

- [8] GB 50010—2010 混凝土结构设计规范[S]. 北京: 中国建筑 工业出版社, 2010. (GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)))
- [9] ZHU Yan-peng, WANG Xiu-li. Analysis and design of pile-prestressed anchor supporting structure[J]. Progress in Mechanics of Structure and Materials, 2006: 541 – 547.
- [10] GB 50330—2002 建筑边坡工程技术规范[S]. 北京: 中国 建筑工业出版社, 2002. (GB 50330—2002 Technical code for building slope engineering[S]. Beijing: China Architecture and Building Press, 2002. (in Chinese))
- [11] 北京金土木软件技术有限公司, PLAXIS 岩土工程软件使 用指南[M]. 北京:人民交通出版社, 2010. (Civil King Software Technology Co, Ltd. PLAXIS geotechnical engineering software guide[M]. Beijing: China Communication Press, 2010. (in Chinese))

(本文责编 孙振远)