杭州粉砂土地基深基坑施工对邻近地铁隧道、 车站的影响研究

袁 静,刘兴旺,陈卫林

(浙江省建筑设计研究院,浙江 杭州 310006)

摘 要:以杭州七堡控制中心综合体中段北区基坑作为工程背景,采用分层总和法、PLAXIS 有限元软件进行粉砂土地 基降水和基坑开挖对邻近隧道基础沉降的叠加影响分析,采用整体式双排围护结构控制基坑开挖时的土体变形,提出 了围护结构复合刚度的简化计算公式。实践表明复合刚度取值介于等面积和等弯刚度之间,符合工程实际,而分层总 和法计算的沉降量远大于实测值,需作折减。

关键词: 粉砂土地基; 盾构隧道; 双排围护结构; 变形控制

中图分类号: TU463 **文献标识码:** A **文章编号:** 1000 - 4548(2012)S0 - 0398 - 06 **作者简介:** 袁 静(1972 -), 女,江苏扬州人,博士,教授级高工,主要从事基坑围护设计、软土地基处理等方面的 研究。E-mail: ojin9999@sina.com。

Effect of construction of deep excavation in Hangzhou silty sand on adjacent metro tunnels and stations

YUAN Jing, LIU Xing-wang, CHEN Wei-lin

(Zhejiang Province Architectural Design and Research Institute, Hangzhou 310006, China)

Abstract: The researches on the settlement of soil, deformation of retaining wall and environmental impact of deep excavation of Metro Control Center during construction, which is 6~8 m away from the metro tunnel and station, are presented. A series of methods are taken, such as dewatering, water proofing and double-row retaining wall to ensure the safety of the metro tunnel and station. The construction is succeeded with the deformation of metro tunnel in the range of allowable values. **Key words**: silty sand; shield tunnel; double-row retaining wall; deformation control

0 前 言

为解决城市交通拥堵的困境,浙江省城市地铁以 及地铁沿线综合体设施建设进入蓬勃发展阶段。由于 浙江省特殊的地质环境以及建设的集中性,上述项目 的基坑工程遇到了较多新问题。例如杭州,位于杭嘉 湖平原的西南部,山地与平原的交接地带;其西南部 为岩质的低山丘陵,北、东、南为广阔的堆积平原。 钱塘江两岸浅表覆盖 15~20 m 厚的粉土、粉砂层, 渗透性大,与钱塘江有水力联系;钱塘江以外堆积平 原浅表则埋藏有深厚的软土;同时基岩上部卵砾石层 中还广泛存在承压水,地质环境复杂。

本文以杭州市第一个邻近已建地铁站房和隧道施 工完成的七堡控制中心综合体中段北区工程(以下简 称控制中心)为例,探讨了粉砂土地基大面积降水、 深基坑施工等对已建地铁隧道和站房的影响问题,工 程实例中基坑底部第一承压含水层的降水经验可为同 类地区工程提供借鉴。

1 工程背景

1.1 工程概况

控制中心工程位于杭州市七堡车辆段核心区^[1], 包括 T1、T2、T3 三幢主楼,下设二层地下室,基坑 平面尺寸约为 251 m×75 m,开挖深度为 12.56 m、13.06 m。

基坑南侧为已施工完成的地铁1号线建华站及其 盾构区间。建华站地下二层,埋深约15m,桩基础, 钢筋混凝土结构,地下室外墙紧贴其自身的0.8m厚 地下连续墙围护结构。盾构隧道分别以2.3%、2.2%坡 率爬坡进站和下坡出站,其顶、底标高约为地表下7m 和13m。车站以及隧道管片外皮最近处距离基坑围护 结构内边线5.49m、8.3m。隧道内轨道还未铺设。B、

```
收稿日期: 2012-08-23
```


图 1 总平面图 Fig. 1 Arrangement of project

C、D 区块工程紧贴基坑北侧围护结构,无地下室。其 桩基础承台与本工程地下室外墙净距仅 1.0 m。两者同 步施工,相互影响较大。其余两侧为空地(详图 1)。

1.2 工程地质条件

工程场地为杭州典型的粉砂土地基,其余如滨江 区、钱江新城、钱江世纪城、下沙等均有类似的地质 条件^[2]。场地浅部约 17 m内为冲海相砂质粉土夹粉 砂,中部约 17~40 m为中高压缩性流塑状淤泥质粉 质黏土层。各土层物理力学指标详见表 1。其中③-5、 ③-6 土层渗透系数为(2~3.5)×10⁻³ cm/s。

基坑开挖面下存在两层淤泥质黏土层,其间为④ -4砂质粉土层。④-4层分布有第一层承压水,水头埋 深为地表下 3.8 m。第二承压含水层分布于⑩-4层圆 砾层中,埋深大,对基坑工程施工影响小,可忽略。 第一承压水则可能引起坑底土体突涌问题。

表 1 各土层物理力学指标

Table 1 Physical and	mechanical	parameters	of soils
----------------------	------------	------------	----------

土类	层 号	厚度 /m	重度 /(kN·m ⁻³)	黏聚力 /(kN·m ⁻²)	内摩擦 角/(゜)	压缩模 量/MPa
砂质粉土	3-2	0.6~4.5	18.7	3	25.0	7.0
砂质粉土	3-3	1.1~5.8	19.2	2	28.5	9.0
粉砂夹砂 质粉土	3-5	1.7~6.2	19.4	2	27.0	6.5
粉砂夹砂 质粉土	3-6	4.7~14.9	19.3	1	29.5	9.5
砂质粉土	3-7	0.6~4.90	19.5	5	25.0	6.0
淤泥质粉 质黏土	④-3	2.30~8.20	17.7	12	10.0	2.6
砂质粉土	④-4	0.90~7.40	18.5	5	24.0	6.0
淤泥质 黏土	6 -2	0.70~8.00	17.4	13	10.0	2.8
黏土	⑦-2	2.0~11.30	18.8	36	15.0	6.0
黏土	®-1	1.6~10.3	17.5	20	12.0	3.0

2 基坑开挖对盾构隧道的影响研究

本工程周边均为在建、待建的建筑物场地或空地, 地表无重要管线,地面沉降不是本工程的关键。建华 站为桩基础,地下连续墙围护结构已进入下部不透水 层,施工期间荷载或降水对其影响小。

隧道为柔性结构,易因外荷变化产生沉降或隆起。 尤其是位于刚柔交界面的隧道进出站口,极易因不均 匀沉降造成隧道渗漏。因此,控制隧道沉降,减少进 出站口位置的沉降差,是本工程关注的重点。控制中 心工程基坑开挖深度影响范围内的土质渗透性强,此 时须考虑基坑开挖和坑外降水引起的沉降叠加效应。

2.1 坑外降水的影响研究

根据《地下铁道、轻轨交通岩土工程勘察规范》 GB50307,因地下水下降引起的土层附加荷载为

$$\Delta P = \gamma_{\rm w} \left(h_1 - h_2 \right) \quad , \tag{1}$$

式中, ΔP 为降水引起的土层附加荷载, h_1 、 h_2 分别 为降水前后土层的水头, γ_w 为水的重度。

鉴于盾构隧道,尤其是进出站口位置对不均匀沉 降的严格控制要求,降水引起的隧道底土体附加沉降 量,采用分层总和法按下式计算:

$$S' = \sum_{i=1}^{n'} S'_i = \sum_{i=1}^{n'} \frac{\Delta P'_i}{E_i} H_i \quad , \tag{2}$$

式中, ΔP_i'为降水引起的盾构底标高以下第 i 计算土 层的附加荷载, n'为盾构底标高以下计算土层数(计 算土层附加荷载≤0.1 倍降水面附加应力), S'为盾构 隧道底面的总附加沉降量, S_i'为盾构隧道底以下计算 土层的附加沉降量。

隧道直径约 6.4 m, 顶标高约为地表下 7 m(图 3), 均位于③-6层粉砂夹砂质粉土中。其下约5m深度处 即为下伏④-3层淤泥质粉质黏土层。该层土压缩性高, 对变形敏感。沉降计算深度除满足计算土层附加荷载 ≤0.1 倍降水面附加应力外,同时计算至④-3 层层底。 表 2 为不同降水深度引起的隧道基础沉降值。

表 2 降水引起的盾构隧道沉降值

Table 2 Values of settlement of shield tunnels induced by

dewa	terino
acmu	toring

降水深度/m	4	5	6	7	8	9
隧道 1 沉降值/mm	8.6	10.6	12.7	14.9	17.0	19.09
隧道 2 沉降值/mm	3.8	4.7	5.7	6.6	7.55	8.5

注:隧道1靠近围护结构,隧道2远离围护结构。

从表2可见,沉降值和降水深度呈线性关系,降 水深度越大,沉降值越大。降水对隧道1的影响更大, 隧道1随降水的沉降增加幅度是隧道2的两倍。

2.2 围护结构变形的控制研究

工程施工期间杭州地铁1号线基坑变形控制保护 等级标准: 地面最大沉降量<13 mm; 围护结构最大水 平位移<19.5 mm。隧道侧围护结构变形控制要求高, 必须具有足够的抗弯刚度。圆形截面构件主筋发挥效 率低: 而地下连续墙刚度大, 整体性好。参考地铁车 站基坑围护经验,采用 800 mm 厚地下连续墙作为围 护结构,结合两道钢筋混凝土作为支撑。经试算^[3-4],

单排围护结构变形见图 2,最大水平位移>19.5 mm。

Fig. 2 Comparison of calculated lateral deformations of retaining structures

单排围护结构刚度不满足要求。为此,在其外侧 增设一排大直径钻孔灌注桩,组成双排围护结构。双 排围护结构之间土体进行加固,确保连成整体,协同 作业,见图3。

目前, 双排围护结构理论研究大多将前后排桩分 开计算,通过选取不同的主、被动区土压力,对前、 后排桩受力和变形进行迭代计算,直至满足两者顶部 变形协调、受力一致的条件。其间前、后排桩土压力 的选取争议较大。部分学者指出排桩间距小时,围护 结构近似悬臂,较大时则类似拉锚桩,且排距大于 4D (D为桩径)时,前后排桩方可有效共同作用。

图 3 双排围护结构典型剖面图

Fig. 3 Typical section of double-row retaining structures

图 3 中双排围护结构距离小,由于其间土体被加固,两者已形成刚度较大的整体,其作用机理和普通 双排围护结构或拉锚桩不同。基于此,将图 3 中双排 围护结构简化为单排围护墙。按等面积原则计算,围 护墙厚度为 1.2 m;按等弯刚度计算,厚度为 2.8 m。 实际双排围护结构顶部为压顶梁刚性连接,顶部以下 为加固土体柔性连接,并未从上至下完全形成刚性连 接的整体。简化后的围护墙厚度虽大于 1.2 m,但也 须对等弯刚度原则计算的围护墙体厚度进行折减。根 据同类工程的实际经验,提出简化公式如下:

$$I = I_{\rm W} + I_{\rm P} + \alpha \cdot A_{\rm P} y_{\rm c}^2, \quad \alpha = \frac{A_{\rm P}}{A_{\rm P} + A_{\rm W}} \quad , \quad (3)$$

式中, I_w , I_p 分别为地连墙、后排桩对自身形心轴的 惯性矩, A_p 为后排桩面积、 y_c 为后排桩形心对双排围 护结构形心轴的距离, α 为折减系数。简化的单排围 护墙厚度 $H = \sqrt[3]{12I}$ (以 1 m 为宽度单位)。采用公式 (3)计算, H为 1.8 m。相应的围护结构最大水平变 位计算值为 11 mm,满足盾构隧道的变形控制要求, 见图 2。

2.3 基坑开挖的环境影响研究

为确保基坑施工期间隧道的安全。采用 PLAXIS 有限元软件进行基坑开挖的环境影响分析。模型尺寸 为 80 m (宽) ×90 m (高),单元网格划分见图 4。 围护结构与土之间设界面单元,模拟土与结构的共同 作用。土体本构模型采用莫尔 - 库仑模型, c、 φ 值 按勘察报告提供的指标选取。围护结构、支撑以及隧 道均为弹性材料。计算结果显示随开挖深度增加,基 坑影响范围逐步扩大,影响深度逐步加深。距离围护 结构越远,影响越小。计算结果见图 5、表 3。周边环 境的变形云图详见图 6。叠加降水引起的盾构隧道基 础沉降计算值后,4m降深时,隧道 1、隧道 2 的沉 降值为 11.1,6.8 mm;在围护结构变位计算值为 11 mm 的前提下,隧道 1、隧道 2 的水平变位计算值分别为 8.3, 3.9 mm,均在允许的范围内。

图 4 有限元网格划分图 Fig. 4 Finite element mesh

图 5 隧道变形和弯矩计算图

Fig. 5 Calculated deformations and bending moments of tunnels 表 3 开挖引起的盾构隧道变形及弯矩值

Table 3 Deformations and bending moments of shield tunnels induced by excavation

		-	
位置	水平位移/mm	沉降/mm	弯矩/(kN·m·m ⁻¹)
隧道1	8.3	2.5	107.4
隧道 2	3.9	3.0	75.3

图 6 变形云图 Fig. 6 Deformation charts

3 基坑围护方案

控制中心工程对于地铁建成通车至关重要,建设 工期紧。根据基坑开挖对隧道的影响研究,双排围护 结构可有效控制围护结构变形。而降水是基坑施工的 临时措施,一般分层沉降总和法计算的最终沉降量数 值偏大。尽管如此,鉴于隧道严格的变形控制要求, 确定隧道一侧降水深度不超过4m;在降水先行启动 使地基预沉降的前提下,B、C、D区块工程一侧降水 深度不超过9m。围护结构方案最终确定如下:

(1) 建华站和盾构隧道处,采用 800 mm 厚地下 连续墙和一排大直径钻孔灌注桩的双排围护结构,两 者之间设置三轴水泥搅拌桩槽壁加固和 800 mm 直径 的高压旋喷桩,作为止水帷幕兼双排围护结构的加固 体;同时采用坑内被动区土体加固,见图 3。

(2) 东北角、西北角设置出土口,采用 800 mm 厚地下连续墙外加大直径钻孔灌注桩的双排围护结构

形式。其余侧采用 800 mm 厚地下连续墙的围护方案。

(3)临近隧道侧坑外周边采用一级轻型井点降水,降水深度不超过4m。坑周距离隧道45m以外范围及坑内采用自流深井降水。深坑位置设置减压降水井,以降低④-4层的承压水头。

(4)沿围护结构竖向设置二道支撑,支撑形式为 大角撑结合对撑和边桁架的形式(见图1),盾构隧道 侧每道支撑顶面增设钢筋混凝土板带。

围护方案采用双排围护结构、坑内被动区加固和 设置钢筋混凝土板带措施,保证足够的抗侧刚度,以 严格控制隧道一侧的土体变形;采用地下连续墙、三 轴水泥搅拌桩槽壁加固和其间嵌入的高压旋喷桩,形 成三道止水帷幕,确保环境安全。结合平面布置图, 在东西两侧设置出土口,施工期间可将基坑沿长边划 分为若干分段,缩小了各区块的施工时间。基于5 m 的支撑竖向间距,可使运输车辆直接在第一、二道支 撑间行走,缩短了出土时间。

4 监 测

本工程距离隧道近,为确保施工过程中隧道、站 房的安全和正常使用,应对围护结构、土体以及隧道、 站房进行全程监测,及时获取开挖过程中上述建(构) 筑物的受力与变形情况,实行动态管理和信息化施工。 本工程除了进行土体和墙体深层水平位移、支撑轴力、 周边土体沉降等常规的基坑监测内容外,重点对已建 成的隧道、建华站进行监测,确保其使用安全。前者 进行了水平位移、沉降、管片水平和竖向收敛监测, 后者进行了墙顶沉降观测,具体监测点布置详图 1。 其中隧道沉降、水平和竖向收敛报警值均为 10 mm。

5 基坑工程施工

5.1 基坑施工

地下室工程于2010年6月开工,第二年4月完成 顶板浇筑。因地下墙已全部穿越⑥-2层淤泥质黏土层, 可有效地将基坑外水流截断。坑内自流深井降水对坑 外周边环境影响小。根据减压降水井的试抽水试验, ④-4层含水层补给有限,最终撤销减压降水井的布置。 开挖至坑底后,未出现④-4层含水层的坑底突涌现象。

5.2 监测结果

根据最终监测报告,地下室顶板浇筑完成后,盾 构隧道附近土体最大深层水平位移值为 9.53 mm。盾 构隧道和建华站变形见表 4、表 5。

建华站水平位移小,墙顶沉降波动幅度大,这与 施工期间该侧重型施工机械行走有关。

表4 盾构隧道变形量

Table 4 Deformations of shield tunnels mm								
水平收	水平收敛测 水平位移测点及		隧道沉降测点		竖向电	友敛测点		
点及收	t敛值	位種	多值	及沉	降值	及收敛值		
LV1	1.22	DW1	-1.42	H1	-3.54	H1	0.87	
LV2	1.16	DW2	-0.40	H2	-3.70	H2	0.71	
LV3	1.24	DW3	-1.21	H3	-4.26	H3	1.13	
LV4	1.21	DW4	-1.52	H4	-4.11	H4	0.54	
LV5	1.15	DW5	-0.66	H5	-3.57	H5	0.95	
LV6	1.22	DW6	-0.48	H6	-3.74	H6	0.70	
LV7	1.15	DW7	-0.97	H7	-4.09	H7	1.07	

表5 建华站地连墙变形量最大值

Table 5 Maximum deformations of diaphragm wall at Jianhua

Static	on		mm
墙顶水平位移	测点及位移值	墙顶沉降位移	;测点及位移值
QW1	1.42	QC1	-3.00
QW2	0.99	QC2	7.15
QW3	1.95	QC3	—
QW4	2.37	QC4	-8.32
QW5	0.67	QC5	—
QW6	2.39	QC6	5.86

支撑轴力随土方开挖而增大,开挖完成后轴力逐 渐稳定,此后轴力受气温变化影响产生一定波动。监 测期间第一道支撑轴力值超出设计标准值较多,第二 道支撑轴力值均在设计控制范围内,现场未发现支撑 开裂等现象,支撑体系安全。支撑轴力最大值见表 6。

表 6 支撑轴力最大值

Table 6 Maximum values of axial forces of supporting structures

							mm
编号	ZL1	ZL2	ZL3	ZL4	ZL5	ZL6	ZL7
第一道	9514	8899	13030	15778	14922	15603	11410
第二道	1443	1472	1029	5704	5597	6113	7222
编号	ZL8	ZL9	ZL10	ZL11	ZL12	ZL13	ZL14
第一道	10146	9307	8937	6763	4039	5815	4158
第二道	5942	5416	4374	5004	2988	1918	3554

5.3 计算和实测结果的分析比较

根据监测结果,除第一道支撑轴力因受气温变化 影响产生波动外,其余监测点监测值均在允许值范围 内。围护结构水平位移和实测位移基本一致,计算结 果略大于实测值。盾构水平位移计算值虽为实测值的 两倍,但两者绝对值小,计算值可作为设计的参考。

对比基坑施工对盾构影响的关键值——竖向沉 降,计算值和实测值相差大,前者约为后者的三倍。 究其原因,表2的总沉降值中④-3淤泥质粉质黏土层 沉降值即占70%。基坑施工工期短,淤泥质土渗透系 数小,实际固结沉降有限,而按分层总和法计算的为 最终沉降量,故计算值大于实测值。该层实际沉降值 约为最终沉降值的15%。

6 结 论

通过对土体沉降、变形控制以及周边环境影响研 究,采取降、止水措施和合理的围护结构侧向刚度, 使粉砂土地基中控制中心基坑围护工程成功实施。本 文可得到以下结论:

(1) 采用双排围护结构可有效提高围护结构刚 度,控制围护结构变位。

(2)一定间距的双排桩围护结构在两者间土体加 固的前提下,可采用整体模式进行基坑围护设计和计 算。简化公式计算的围护结构复合刚度值介于等面积 刚度和等弯刚度之间,符合工程实际。

(3)采用分层总和法计算基坑施工降水引起的盾 构沉降,计算误差大,下伏软弱土层压缩量应乘以15% 的折减系数。

(4)工程场地下伏的第一层承压含水层④-4 层, 渗透系数小,对基坑开挖影响小,可不采取提前降压 措施。

参考文献:

 袁 静,刘兴旺,陈卫林. 杭州地铁控制中心综合体工程 基坑围护设计说明[R]. 杭州:浙江省建筑设计研究院, 2010. (YUAN Jing, LIU Xing-wang, CHEN Wei-lin. Excavation design of angzhou metro control center[R]. Hangzhou: Zhejiang Province Architectural Design and Research Institute, 2010. (in Chinese))

- [2] 浙江华东建设工程公司. 七堡车辆段核心区综合体(控制中心)岩土工程勘察报告[R]. 杭州:浙江华东建设工程公司, 2009. (East China Construction Engineering Corporation of Zhejiang. Geotechnical investigation of Hangzhou metro control center[R]. Hangzhou: East China Construction Engineering Corporation of Zhejiang, 2009. (in Chinese))
- [3] DB33/T1008—2000 建筑基坑工程技术规程[S]. 杭州: 浙 江省标准设计站, 2000. (DB33/T1008—2000 Code for technique of building foundation excavation engineering[S]. Hangzhou: Zhejiang Province Code Institute, 2000. (in Chinese))
- [4] J10036—2000 建筑基坑工程技术规程[S]. 杭州:浙江省标 准设计站, 2000. (J10036—2000 Code for technique of building foundation excavation engineering[S]. Hangzhou: Zhejiang Province Code Institute, 2000. (in Chinese))

(本文责编 明经平)