考虑桩体几何特征的压桩挤土效应理论解答研究

高子坤^{1,2},施建勇²

(1. 莆田学院土木建筑系, 福建 莆田 351100; 2. 河海大学岩土工程科学研究所, 江苏 南京 210098)

摘 要:现阶段基于能量原理的桩土作用理论解答研究仍存在较多不完全合理的假设或急需解决的难点,包括桩土接触面边界处理方法、分层沉积土层界面连续性条件和桩体几何形状等。特别是,桩体几何形状对桩土作用的剧烈程度、 桩周土体的位移形式和桩孔边界的几何特征有很大的影响。重点对孔壁边界曲线的几何形状及其曲线方程的假定方法 展开研究,并应用四次多项式模拟孔壁边界曲线。然后,以四次孔壁曲线方程的求解结果为基础,综合考虑桩长有限、 地面自由、终孔孔壁形状、孔壁位移边界条件以及土体材料非线性,应用变分原理推导沉桩挤土位移、应变和应力场 解答。研究方法可作为压桩挤土的进一步理论研究的基础,理论解答对压桩挤土的施工、相应防护措施的选择和设计 有一定的指导作用。

关键词: 压桩挤土; 空间轴对称; 孔壁边界曲线; 位移变分法 中图分类号: TU47 文献标识码: A 文章编号: 1000 - 4548(2010)06 - 0956 - 07 作者简介: 高子坤(1973 -), 男, 福建福清人, 博士, 从事岩土力学和地基基础方面。E-mail: <u>gaozikun205@126.com</u>。

Theoretical solutions of soil-squeezing effect due to pile jacking considering geometrical characteristics of a pile

GAO Zi-kun^{1, 2}, SHI Jian-yong²

(1. Civil Engineering Department of Putian University, Putian 351100, China; 2. Geotechnical Research Institute of Hohai University,

Nanjing 210098, China)

Abstract: There are still many imperfect hypothesises or theoretical difficulties needed to be solved in the current energy-principle-based solutions of soil-squeezing effect due to pile jacking. The difficulties are as follows: boundary conditions of interface between pile and soil, continuity conditions for interface in stratified soil and different geometrical shapes of a pile, etc. Especially the geometrical shapes of pile have great influences on the severity rate of soil-squeezing effect and displacement mode of soil around the pile and geometrical characteristics of pile holes. The curvilinear equation of quartic polynomial is used to simulate the boundary of the pile hole to improve the presumption of previous research results which are not well suitable. Then, the soil squeezing model due to pile jacking is constructed, considering the effect of the final shape and displacement boundary of pile wall, the stress free ground surface, the finity of pile length and the non-linearity of soil materials. Finally, soil displacement, strain and stress solutions are obtained based on the variational principal. The present research method can be the basis for further theoretical studies on soil-squeezing problems, and the results are valuable for the engineering design and construction of pile foundation.

Key words: soil-squeezing effect due to pile jacking; space axis symmetry; boundary curve of pile hole; variational principal

0 引 言

当前,广泛应用于压桩挤土效应理论分析的球孔 扩张或柱孔扩张法,分别假定初始小孔和终孔形状为 球形或圆柱形,这样的假定简化了桩孔扩张的力学模 型,但实际的贯桩过程是发生在半无限成层土体中, 具有空间性,桩的形状和长度也各不相同,因此需要 研究半无限土体中一般桩孔扩张的特性和解答。陈文 ¹¹考虑了压桩问题的应力边界值随深度的变化,得到 了空间轴对称问题的弹塑性解答,但解答中竖向应变 为零,且孔壁边界应力随深度线性递增不完全符合实 际情况。Sagaseta^[2-3]认为压桩问题中桩周土体变形可 以视为位移问题,提出源汇法来求解土体内圆孔扩张 引起的变形问题。对于半无限土体问题,则采用地表

基金项目:国家自然科学基金面上项目(50878075);福建省科技厅 青年人才项目(2008F3094);福建省教育厅A类项目(JA08198) 收稿日期: 2009 - 02 - 13

应力修正的方法来解决,根据求解对象不同采用不同 的修正方式。汪鹏程^[4]等也都采用过类似的思路来解 决半无限问题。朱宁^[5]对现有的球孔扩张法进行改进, 得到了半无限空间内球孔张产生的位移解,以此解答 为基础,得到压桩施工产生的挤土位移场的理论解答, 具有较大的意义。但上述文献中的土体线弹性的假定 或叠加原理的使用,无法反映土的本质特征。

桩孔扩张过程中, 桩身段主要沿径向扩张, 桩尖 沿竖向向下挤压, 桩身与桩尖的过渡段既有径向扩张 也有竖向挤压,但扩张量小于桩身,竖向挤压量小于 桩尖,且桩端也不一定是半球形的,所以桩孔扩张和 传统的圆孔扩张有所不同,需要进一步的研究。文献 [6]应用变分原理推导沉桩挤土位移、应变和应力场解 答,并应用经典土压力理论、小孔扩张理论和 Ansvs 计算结果对理论推导结果进行验证,其缺点是未对桩 土边界处理方法、分层沉积土层界面连续性条件和桩 体几何形状等等。目前,基于能量原理的桩土作用理 论解答研究仍存在很多不完全合理的假设或急需解决 的难点。特别, 桩体几何形状对桩土作用的剧烈程度、 桩周土体的位移形式和桩孔边界的几何特征及位移有 很大的影响,其影响程度及方式需要进一步研究。由 于沉桩施工工艺或压桩可行性要求,对于没有特定要 求的桩基工程,通常要求桩孔壁是直立的或近似直立 的,这种要求使桩壁和桩尖连接形成的孔壁曲线必须 用分段函数表示,而分段函数求导结果不连续使基于 能量原理的理论解答推导遇到很大的困难,所以当前 研究成果通常用一阶连续可微函数近似表示分段函数 [6-7]。本文应用四次多项式模拟孔壁边界曲线,然后以 四次孔壁曲线方程的求解结果为基础, 推导压桩挤土 问题的理论解答,并与基于二次多项式模拟孔壁边界 曲线的理论解答比较,说明桩体几何形状对桩土作用 的影响。

1 桩孔扩张模型

1.1 初始小孔边界曲线函数及几何特征

基于能量原理的压桩扩孔的理论解答推导通常需 要一假想的初始小孔,初始小孔取得太小,会使孔壁 附近的应变太大,增加计算误差。如果初始小孔半径 取得太大,在终孔半径确定的情况下,又会使桩孔扩 张排土量显著减少,不符合实际扩孔过程。

基于圆孔扩张理论,Carter等^[8]和Randolph等^[9]提 出沉桩模拟的小变形有限元分析。他们在研究中采用 的土体本构模型分别为理想弹塑性和修正剑桥模型。 考虑到小孔从半径为0扩张会造成计算中应变无穷大, 所以他们采用初始半径为*a*₀的小孔扩张到终孔半径 $2a_0$ 的方法来模拟 $0 \sim R_0$ 的实际扩孔过程 (R_0 为终孔 时桩的半径),得到了足够精确的解答。由排土体积相 等 的 条 件 : $\pi[(2a_0)^2 - a_0^2] = \pi R_0^2$ 可 推 得 : $a_0 = R_0/\sqrt{3} = d/(2\sqrt{3})$ 。对于从桩径等0开始扩张的实 际桩孔扩张过程,可取初始小孔孔口半径为 $r_0 = a_0$, 并采用半径为 r_0 的小孔扩张到终孔半径 $2r_0$ 的方法来 模拟 $0 \sim R_0$ 扩孔过程。对于有预钻孔沉桩的情形,可 以以预钻孔的半径为 r_0 的值,采用 $r_0 \sim R_0$ 的较精确的 扩孔过程。

下面根据 r_0 设定初始小孔曲线方程 g(z,r)=0 分 別为

$$z - H\left(1 - \frac{r^2}{r_0^2}\right) = 0$$
 , (1a)

$$z - H\left(1 - \frac{r^4}{r_0^4}\right) = 0$$
 , (1b)

$$z - H\left(1 - \frac{r^6}{r_0^6}\right) = 0$$
 , (1c)

式中,H为桩长, r_0 为初始孔口半径。

根据式(1),图1绘出3种初始孔壁边界曲线并标出对应的方程。由图1可知,式1(a)和1(b)的曲线形状相差较大,而式1(b)和式1(c)曲线形状相差较小,所以本文取式1(b)为初始小孔边界曲线方程,如图2示。总体上多项式中r的方次越高,初始小孔的尖部越钝,桩身越竖直(图1中纵坐标和横坐标比例不同,等比例坐标表示的图形上看的更为竖直,见图2(b))。

根据图 1 确定的桩孔边界曲线形状和曲线外法线 方向等值位移假定^[6](曲线族中任一曲线上的所有点, 位移值相同 *u*(*z*, *r*) = *C*,方向为曲线的外法线方向), 此时孔壁侧向位移与柱孔扩张的孔壁边界位移相近。 桩端附近孔壁边界位移特征是: 桩尖处竖直向下,桩 尖两侧由深到浅,竖向位移分量逐渐减小,径向位移 分量逐渐增加,和球孔扩张过程中孔壁边界位移分布 变化规律相近,而且两个不同扩张过程的边界,用一 连续曲线表示,符合边界位移、应变和应力的连续性 要求,使位移边界的处理更简单合理。

图 2 桩孔扩张模型

Fig. 2 Pile cavity expansion

1.2 数学力学模型

变分原理以积分形式的数学模型来描述工程力学问题,虽然得到的是近似解,但从理论上讲是严密的,只要设定的位移试探函数或应力函数较合理,理论上讲是可以得到较精确解答的,解答最终可以收敛于精确解。本文模型的基本假定如下:

(1) 土体为非线性的连续介质;

(2) 土体应力应变服从 Duncan-Chang 模型。

首先建立图 2 (a) 所示的桩孔扩张模型,假设桩 周土体区域由一曲线族覆盖,曲线族中任意一条曲线 (图 2 (a) 中的虚线)的方程为式 (2)。当 z_0 (曲线 与z轴交点的坐标)在 $z_0 \ge H$ 范围内连续取值时,曲 线方程必须可以覆盖研究区域中的任意点,同样,研 究区域中的任一点z,r都对应唯一的一个 $z_0 z_0 \ge H$ 值,所以整个研究区域是由以 z_0 为参数的曲线族构 成^[6]:

$$f(z,r,z_0) = 0$$
 , (2)

式中, zo为曲线族参数。

根据 1.1 小节分析和初始孔壁曲线方程式(1)和 终孔孔壁的实际形状和比例,画出孔壁边界及其位移 图 2 (b)。如图 2 (b)示,孔壁位移 $\Delta u = r_0$,位移方 向为初始孔壁曲线的外法线方向。 取式(2)所示的曲线族方程为

$$f(z,r,z_0) = \frac{z_0 r^4}{(z_0 - H + r_0)^4} - z_0 + z = 0 \quad , \quad (3)$$

式中, z_0 为曲线族参数, 当 $z_0 = H$ 时, $z = H \left(1 - \frac{r^4}{r_0^4} \right)$, 即式 (3)收敛到孔壁边界曲线方程式 (1b)。

设**a**为曲线外法线方向与z轴的夹角,则式(3) 所示曲线的外法线方向余弦为

$$\cos a = \frac{f_z}{\sqrt{f_z^2 + f_r^2}}, \qquad \sin a = \frac{f_r}{\sqrt{f_z^2 + f_r^2}}, \quad (4)$$

式中,
$$f_z = \frac{\partial f(z, r, z_0)}{\partial z}$$
, $f_r = \frac{\partial f(z, r, z_0)}{\partial r}$ 。

由式(3)和(4)可得曲线的外法线方向式

$$\cos a = \frac{1}{\sqrt{\frac{16{z_0}^2 r^6}{\left(z_0 - H + r_0\right)^8} + 1}} , \qquad (5)$$

$$\sin a = \frac{4z_0 r^3}{\left(z_0 - H + r_0\right)^4 \sqrt{\frac{16z_0^2 r^6}{\left(z_0 - H + r_0\right)^8} + 1}} \quad (6)$$

2 桩孔扩张理论解及泛函积分变换

2.1 桩孔扩张理论解

根据文献[6]所列的几何方程、本构方程及相应的 求解步骤可得基于四次孔壁边界曲线的研究区域内任 意点的径向位移*u*,和竖向位移w表达式:

$$u_{r} = u_{r0} + \sum_{m} A_{m} u_{rm}, w = w_{0} + \sum_{m} B_{m} w_{m} \quad , \quad (7)$$

$$\vec{x} \oplus \quad w_{0} = u_{0} \left(T_{t} \cos a \right), \quad u_{r0} = u_{0} T_{t} \sin a \; ; \; W_{1} = u_{0} T_{t} \cos a \left(1 - \frac{H}{z_{0}} \right) \\ w_{1} = u_{0} T_{t} \cos a \left(1 - \frac{H}{z_{0}} \right)^{2}, \quad u_{r2} = u_{0} T_{t} \sin a \left(1 - \frac{H}{z_{0}} \right)^{2};$$

$$T_{t} = \frac{r_{0}}{z_{0} - H + r_{0}} \mathbf{L} \quad \circ$$

其中: A_m , B_m 为相互独立的 2 m 个系数; u_{r0} , w_0 为位 移函数,在孔壁边界,其值等于边界上的已知位移值; u_m , w_m 为位移函数,在孔壁边界,其值等于零;这样 不论 A_m , B_m 如何取值, u_r ,w总能满足桩孔扩张的孔壁 位移边界条件。

应变表达式(以压为正)和相应的应力分量[10]为

$$e_{r} = -\frac{\partial u_{r}}{\partial r}, \quad e_{q} = -\frac{u_{r}}{r}, \quad e_{z} = -\frac{\partial w}{\partial z},$$

$$g_{zr} = \frac{\partial u_{r}}{\partial z} + \frac{\partial w}{\partial r},$$
(8)

式中, u_r ,w为径向位移和竖直向位移, e_r , e_q , e_z , g_r 为径向应变、环向应变、竖向应变和rz方向的剪 切应变。

$$S_{r} = \frac{E_{\text{sec}}}{1+n_{t}} \left[\frac{n_{t}}{1-2n_{t}} (e_{r} + e_{q} + e_{z}) + e_{r} \right] + \frac{n_{0}}{1-n_{0}} g z,$$

$$S_{q} = \frac{E_{\text{sec}}}{1+n_{t}} \left[\frac{n_{t}}{1-2n_{t}} (e_{r} + e_{q} + e_{z}) + e_{q} \right] + \frac{n_{0}}{1-n_{0}} g z,$$

$$S_{z} = \frac{E_{\text{sec}}}{1+n_{t}} \left[\frac{n_{t}}{1-2n_{t}} (e_{r} + e_{q} + e_{z}) + e_{z} \right] + g z, t_{zr} = \frac{E_{\text{sec}}}{2(1+n_{t})} g_{zr},$$
(9)

式中, e_r, e_q, e_z, t_r 由式 (8) 确定, n_0 为土扩孔前的 泊松比; g 为土的重度; g_z 为前期固结压力。所以, 势能密度是 z, r, z_0 的函数, 即

$$A(\boldsymbol{e}_{ij}) = \int_{0}^{\Delta u} D(z, r, z_0, u_0, \overline{A}, \overline{B}) du_0 \quad , \qquad (10)$$

$$\vec{x} \oplus, \quad \overline{A} = \{A_1, A_2, \mathbf{L}, A_m\}, \quad \overline{B} = \{B_1, B_2, \mathbf{L}, B_m\},$$

$$D(z, r, z_0, u_0, \overline{A}, \overline{B}) = \boldsymbol{s}_r \left(\boldsymbol{e}_{ij}\right) \frac{\partial \boldsymbol{e}_r}{\partial u_0} + \boldsymbol{s}_q \left(\boldsymbol{e}_{ij}\right) \frac{\partial \boldsymbol{e}_q}{\partial u_0} +$$

$$\boldsymbol{s}_z \left(\boldsymbol{e}_{ij}\right) \frac{\partial \boldsymbol{e}_z}{\partial u_0} + \boldsymbol{t}_{zr} \left(\boldsymbol{e}_{ij}\right) \frac{\partial \boldsymbol{g}_{zr}}{\partial u_0},$$

且满足约束条件: $f(z,r,z_0)=0$ 。

2.2 能量泛函积分变换

泛函积分是对空间轴对称问题整个研究区域的 能量积分。积分存在下述困难:首先,势能密度式(10) 含有 3 个空间坐标量 z,r,z_0 ,它们满足约束条件 $f(z,r,z_0)=0$,即 3 个变量并不独立;其次,存在分 段函数形式的积分边界: $z \le H$ 时,积分边界曲线为 g(z,r)=0, z > H时,积分边界为直线r=0。为简 化积分计算,需要进行积分变换使:

(1) 3个空间坐标量 z,r,z。化为两个独立变量;

(2) 使积分边界或积分上下限均为常数。

为达到上述目的,建立图 3 所示的变换模型。图 中引入参数q,q为z轴和射线 *OB*的夹角,*B*点的坐标为(z,r),则有 $r=z\tan q$,将 $r=z\tan q$ 代入曲线方程式 (3)求解可得

$$z = y(z_0, q) = \frac{\sqrt[3]{9}\sqrt{2}(z_0 - H + r_0)}{12\sqrt[3]{z_0} \tan q} \left(\sqrt[3]{2}\sqrt{M_2} - \sqrt[12]{2} \times \sqrt{\frac{M_0}{\sqrt{M_2}\sqrt[3]{M_1} \tan q}} \right),$$
(11)

$$\begin{aligned} \vec{x} &\Leftrightarrow \\ M_0 &= -\sqrt{2}\sqrt{M_2}\sqrt[3]{M_1^2} + 8\sqrt[6]{2}\sqrt[3]{3}\sqrt[3]{z_0^4}}\sqrt{M_2} \tan^2 q \\ &-12z_0\sqrt[3]{M_1} + 12\sqrt[3]{M_1} (H - r_0) ; \\ M_1 &= \left[9\left(z_0^2 + H^2 + r_0^2 - 2Hz_0 + 2r_0z_0 - 2Hr_0\right) + \\ &\sqrt{3} \times \sqrt{M_3 + M_4} + M_5 + M_6\right] \tan q ; \\ M_2 &= \frac{-\sqrt[3]{M_1^2} + 4\sqrt[3]{12}\sqrt[3]{z_0^4} \tan^2 q}{\sqrt[3]{M_1} \tan q} ; \\ M_3 &= 256z_0^4 \tan^4 q - 108\left(z_0^3 H + r_0 H^3\right) + 162H^2r_0^2 ; \\ M_4 &= -108Hr_0^3 + 162z_0^2 H^2 - 108z_0 H^3 ; \\ M_5 &= -324\left(z_0^2 Hr_0 - z_0 H^2r_0 + z_0 Hr_0^2\right) + \\ &27\left(r_0^4 + z_0^4 + H^4\right) ; \\ M_6 &= 108\left(z_0r_0^3 + z_0^3r_0\right) + 162z_0^2r_0^2 & . \end{aligned}$$

图 3 泛函积分变换模型

Fig. 3 Functional integral transform model

将式(11)以及 $r = y(z_0, q) \tan q$ 代入式(10)使 势能密度成为 (z_0, q) 的函数,即

$$A(\boldsymbol{e}_{ij}) = \int_0^{\Delta u} D(\boldsymbol{y}, \boldsymbol{y} \tan \boldsymbol{q}, \boldsymbol{z}_0, \boldsymbol{u}_0, \overline{\boldsymbol{A}}, \overline{\boldsymbol{B}}) \mathrm{d}\boldsymbol{u}_0 \quad , \quad (12)$$

式中, $y = y(z_0, q)$ 。

由图 3 可得三角形 ΔOBC 的面积:

$$S(z_0,q) = \frac{r^2 + z^2}{2} dq = \frac{y^2(z_0,q)(1 + \tan^2 q)}{2} dq$$

四边形 BEFC 所围成的微面积为

$$dS = \frac{\partial S}{\partial z_0} dz_0 = (1 + \tan^2 q) \mathbf{y} \frac{\partial \mathbf{y}}{\partial z_0} dz_0 dq \quad . \tag{13}$$

假设地面和无穷远处的应力为零,研究区域能量 方程可写为式(14)。

$$\Pi = \iiint_{V} A(e_{ij}) dV$$
$$= 2\pi \iint_{S} \int_{0}^{\Delta u} D(z, r, z_{0}, u_{0}, \overline{A}, \overline{B}) r du_{0} dS \quad , \quad (14)$$

式中, A(e_{ii}) 由式 (12) 表示。

将式(11)及 $r = y(z_0, q) \tan q$ 代入式(14)可得 式(15)。如图 3 示,式(15)中任意积分点位置由 (z_0, q) 确定,包围点 (z_0, q) 的微面积由式(13)确定, z_0 的 积分限为 $H \sim \infty$, q的积分限为 $0 \sim \pi/2$, u_0 的积分限 为 $(0, \Delta u)$ 。

$$\Pi = 2\pi \int_{H}^{\infty} \int_{0}^{p/2} \int_{0}^{\Delta u} \left[\left(1 + \tan^{2} q \right) \times Dy \frac{\partial y}{\partial z_{0}} y \tan q \right] du_{0} dq dz_{0} , \qquad (15)$$

 $\vec{x} \oplus, \quad D = D(\mathbf{y}, \mathbf{y} \tan q, z_0, u_0, \overline{A}, \overline{B});$ $\overline{A} = \{A_1, A_2, \mathbf{L}, A_m\}, \overline{B} = \{B_1, B_2, \mathbf{L}, B_m\} .$

上述通过积分变换,得到积分泛函式(15),其积 分上下限均为常数,积分计算较容易实现。

3 算例分析

3.1 本文理论解答计算结果

应用式 (11) ~ (15) 和式 (7) ~ (9), 对算例 ^[11]的实际桩孔扩张问题进行计算, 计算结果见图 4。 计算中使用的参数如下: 桩长 *H*=6 m, 桩径 *d*=0.5 m; 并取: $r_0 = d/(2\sqrt{3}) = 0.14$ m。土工参数见表 1。考虑 到 Duncan-Chang 模型初始弹性模量随前期固结压力 增加而增加, 较深层土体的物理指标对计算结果影响 较明显,本文计算的黏聚力和摩擦角取淤泥质黏土和 黏土的均值 (*c*,*j* 为固结不排水指标): *c*=14 kPa; *j*=13.25°。

由于桩周土体的土性介于软黏土和硬黏土之间, 根据文献^[12],算例使用的本构模型参数为:破坏比: $R_{\rm f} = 0.8$;初始弹性模量: $E_{\rm i} = Kp_{\rm a} (S_3/p_{\rm a})^n$, K = 200, n = 0.5;体积变形模量 $K_{\rm t} = K_{\rm b} p_{\rm a} (S_3/p_{\rm a})^m$ 中, $K_{\rm b} = 50$, m = 0.5。

表**1**土工参数

Table 1 Son parameters						
土	深度	弹性模	泊松	重度	黏聚力	摩擦角
层	/m	量/Pa	比	/(kN·m ⁻³)	c/kPa	j /(°)
1	$0 \sim 2$	3.4×10^{7}	0.29	18.5	12	18 [°]
2	$2 \sim 4$	9×10^{7}	0.46	17	13	12°
3	>4	3.2×10^{7}	0.42	17.5	15	14.5°

注: ①为粉质黏土, ②为淤泥质黏土, ③为黏土。

3.2 基于 CEM 的侧向应力结果

根据圆孔扩张理论^[13-14],水平和竖向应力增量在 塑性区内的分布为

$$\Delta \boldsymbol{s}_{r} = 2c_{u} \ln \frac{R_{p}}{r} + c_{u} ,$$

$$\Delta \boldsymbol{s}_{z} = 2c_{u} + \ln \frac{R_{p}}{r} ,$$
(16a)

在弹性区应力增量为

$$\Delta \boldsymbol{S}_{r} = c_{u} \left(\frac{R_{p}}{r}\right)^{2} , \ \Delta \boldsymbol{S}_{z} = 0 , \qquad (16b)$$

式中 R_u 为桩孔半径; $R_p = R_u \sqrt{(E/2(1+m)c_u)}$ 为塑性 区半径。根据表 1 塑性区半径 $R_p \approx 5R_u$ 。计算结果见 图 4。

Fig. 4 Stress variation along radial direction

3.3 基于极限平衡理论的随深度变化的侧应力

圆孔扩张理论可以较好的反映出桩径比与侧压力 的关系的影响,但由于小孔扩张理论是基于平面轴对 称假定,无法反映侧压力随深度改变。

极限平衡理论的侧压力随深度变化规律^[15]如式 (17),由于土的分层特性,被动土压力系数在分层界 面处有突变,所以计算得到的被动土压力曲线随深度 有突变,如图4所示。

$$\boldsymbol{S}_{r} = \boldsymbol{g} z \left[\tan^{2} \left(\frac{\pi}{4} + \frac{j}{2} \right) \right] + 2c \tan \left(\frac{\pi}{4} + \frac{j}{2} \right) \quad (17)$$

3.4 本文解答、文献[6]解答、圆孔扩张和极限平衡 理论计算结果比较

根据本文3.1,3.2和3.3节对算例计算结果见图4, 文献[6]计算结果见图5。

图 4 的应力分布规律与图 5 基本相同。但桩尖平 面附近的侧向应力最大值不同:

(1) 桩尖附近侧向应力随径向距离与桩径的比值 改变而变化,最大值都在一倍桩径左右,图4(a)的 最大值大约为160 kPa,图5(a)大约为150 kPa。 (2)侧向应力随深度改变而变化,最大值都在大约5m深度处,图5(a)的最大值大约为150kPa,图4(a)大约为160kPa。

图 5 侧向挤土压力变化规律

Fig. 5 Stress variation along radial direction

与文献[6]的计算结果相同,本文解答在地面处 侧向应力也趋于零,这是由于本文选用 Duncan-Chang 模型,其初始弹性模量与场地土的前期固结压力成正 比,对于正常固结土,在地面处前期固结压力为 0, 所以弹性模量为 0 的缘故。地面处竖向正应力和剪应 力为零,表明计算结果满足地面为自由面的条件。

由图4(a)知:

(1) 在 10 倍桩径处,本文解答和圆孔扩张理论 计算结果基本重合;

(2)在1~10倍桩径范围内,本文解答大于圆孔 扩张解,这是由于本文采用非线性弹性理论,其非线 性区域与圆孔扩张解答的塑性区不同;

(3)在 0.5~1 倍桩径范围内圆孔扩张理论解答 和本文解答相交;

在小于1倍桩径范围内圆孔扩张理论解答和本文 解答有本质不同,圆孔扩张法计算结果是随径向距离 与桩径的比值减小而单调增大;本文解答在小于一倍 桩径,且深度5.5~6.5m范围内,计算的3条曲线随 着深度增加,侧向应力减小,这与实际桩孔扩张中, 桩尖附近径向扩张量较桩身处小,并在桩尖处趋于0 相符合。桩尖以下对称轴上出现挤压劈裂造成的拉应力区。

由图4(b)知:

(1)在地面处,本文解答得到的侧向应力趋于零, 即地面处竖向正应力和剪应力为零,地面为自由面;

(2) 在深度 0~5 m 范围内,侧压力随深度的变 化趋势与极限平衡理论计算结果基本相同,即随深度 的变化线性增加。

(3)在5~6m范围内变化趋势明显不同。在桩 尖附近侧向扩张量小于达到极限平衡所需的侧向位移 量,即其应力值小于极限平衡理论计算结果。

(4)由于土的分层特性,被动土压力系数在分层 界面处有突变,所以计算得到的被动土压力曲线有突 变,不是一光滑曲线。

4 结 语

考虑桩体几何形状对桩土作用的剧烈程度、桩周 土体的位移形式和桩孔边界的几何特征的影响,应用 四次多项式模拟孔壁边界曲线。

以四次孔壁曲线方程的求解结果为基础,推导压 桩挤土问题的理论解答,并与基于二次多项式模拟孔 壁边界曲线的理论解答比较,说明桩体几何形状对桩 土作用的影响。

由于使用能量原理,需要对研究区域的能量泛函 进行三维广义积分,积分结果的可行性和可靠性决定 了待定系数求解的可行性和精确程度,所以本文侧重 分析了能量泛函的积分变换方法。

研究方法可作为压桩挤土的进一步理论研究的基础,理论解答对压桩挤土的施工、相应防护措施的选择和设计有一定的指导作用。

参考文献:

- 陈 文. 饱和黏土中静压桩沉桩机理及挤土效应研究[D].
 南京: 河海大学, 1999. (CHEN Wen. Penetration and soil compaction effect of pile jacks in saturated clay[D]. Nanjing: Hohai University, 1999. (in Chinese))
- [2] SAGASETA. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987, 37(3): 301 - 320.
- [3] SAGASETA. Prediction of ground movements due to piledriving in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 55 - 66.
- [4] 汪鹏程. 软化剪胀土中孔扩张理论及沉桩挤土性状研究[D]. 杭州:浙江大学, 2005. (WANG Peng-cheng. Study on

cavities expansion in soils with softening and dilation and analysis of pile driving effects[D]. Hangzhou: Zhejiang University, 2005. (in Chinese))

- [5] 朱 宁. 静力压桩引起桩周土体变形的理论分析[D]. 南京: 河海大学, 2005. (ZHU Ning. Theoretical analysis of soil deformation due to pile jacking[D]. Nanjing: Hohai University, 2005. (in Chinese))
- [6] 高子坤, 施建勇. 基于变分原理的静压沉桩挤土效应理论 解答研究[J]. 岩土工程学报, 2009, 31(1): 52 - 58. (GAO Zi-kun, SHI Jian-yong. Theoretical analysis of soil squeezing effect due to jacked piles based on variation principle[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 52 - 58. (in Chinese))
- [7] 高子坤. 静压桩沉桩挤土效应和桩间土固结特征理论分析
 [D]. 南京: 河海大学, 2007. (GAO Zi-kun. Theoretical analysis of soil squeezing effect and conslidation characteristic due to pile jacked[D]. Nanjing: Hohai University, 2007. (in Chinese))
- [8] CARTER J P, RANDOLPH M F, WROTH C P. Stress and pore pressure changes in clay during and after the expansion of cylindrical cavity[C]// Int J for Num and Analy in Geomech, 1979.
- [9] RANDOLPH M F, CARTER J P, WROTH C P. Driven piles in clay – the effects of installation and subsequent

consolidation[J]. Géotechnique, 1979, 29(4): 361 - 393.

- [10] 徐芝纶. 弹性力学[M]. 第三版. 北京: 高等教育出版社, 1984: 274 - 278. (Xu Zhi-lun. Elastic mechanics[M]. 3rd ed. Beijing: Higher Education Press, 1984: 274 - 278. (in Chinese))
- [11] 唐世栋,李 阳. 基于 Ansys 软件模拟桩的挤入过程[J].
 岩土力学, 2006, 27: 973 976. (TANG Shi-dong, LI Yang Analysis of a driven pile by ANSYS[J]. Rock and Soil Mechanics, 2006, 27: 973 976. (in Chinese))
- [12] 郑颖人, 沈珠江, 龚晓南. 岩土塑性力学原理[M]. 北京: 中国建筑工业出版社, 2002: 180 - 183. (ZHENG Ying-ren, SHEN Zhu-jiang, GONG Xiao-nan. The principles of geotechnical plastic mechanics[M]. Beijing: China Architecture and Building Press, 2002: 180 - 183. (in Chinese))
- [13] VISIC A C. Expansion of cavity in infinite soil mass[J]. Journal Soil Mech Found Div, ASCE, 1972, 98(3): 265 - 289.
- [14] ATKINSON J H, BRANSBY P L. The mechanics of soils[M]. England: McGraw-Hill, 1978.
- [15] 陈希哲. 土力学地基基础[M]. 第四版. 北京: 清华大学出版社, 2004: 195 202. (CHEN Xi-zhe. Soil mechanics and geotechnical engineering[M]. 4th ed. Beijing: Tsinghua University Press, 2004: 195 202. (in Chinese))