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Active earth pressure on circular shaft lining obtained by simplified slip line solution
with general tangential stress coefficient
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Abstract: In this paper, a general tangential stress coefficient is introduced to overcome the limitations of the Haar & Von Karman
hypothesis in axi-symmetric earth pressure problem. A simplified analytical solution of active earth pressure on circular shaft with no wall
friction and horizontal backfill is developed in the present paper. It is demonstrated that the tangential stress coefficient has a major effect
on the active pressure and the Harr & Von Karman hypothesis may be unacceptable in practice. The authors consider that an active earth
pressure based on a tangential stress coefficient equal to the coefficient of earth pressure at rest is suitable for engineering practice.
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0 Introduction

For circular excavation, most of the engineers in
Hong Kong and in other countries adopt plane strain
active pressure coefficient in the analysis and design, but
this approach is obviously not correct and conservative.
For circular excavation, the stress states are
axi-symmetric in nature and the active pressure may
attain a maximum value with increasing depth which is
greatly different from thet results in plane strain case.
For circular foundation and excavation, the Haar-Von
Karman’s hypothesis is adopted by many researchers to
simplify the analysis. Berezantzev!'! adopted simplified
slip line to study the active pressure solution. Steinfeld!
and Karafiath® have

Coulomb-type failure surface where the sliding mass is a

assumed an axisymmetric

cone and the total earth pressure is obtained in a way
similar to the classical Coulomb’s method. Lorenz!"!
adapted Steinfeld’s theory to the active pressure, while
neglecting the tangential stress in radial direction
equilibrium. All of the above works are based on the use
of Harr and Von Karman’s hypothesis where A=1.

[5]

Prater'™ summarized the above works and adopted a

tangential stress coefficient equal to K and K, which is
different from the Harr-Von Karman’s hypothesis in
investigating the active pressure for shaft lining with
Coulomb’s method. Prater viewed that Berezantzev’s
solution delivered very low value of active earth pressure
because of Haar-Von Karman’s hypothesis. Cuil® also

considered that the active earth pressure from
Berezantzev’s solution may be risky to be applied in
practice. The tangential stress coefficient initiated by
Prater is extended to modify Haar-Von Karman
hypothesis in present paper. Using the simplified

assumptions similar to that of Berezantzev!']

, analytical
formulae are also developed in the present study. From
the results of analysis, many interesting results for
axisymmetric problems which differ greatly with the

plane strain solution are obtained in the present paper.

1 Method of characteristics for axisym
-metric Problem
The eauilibrium equations for a toroidal element

(Fig.1) can be written in cylindrical coordinates r, 6, z
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The four stress components can be expressed in terms of
the mean stress o and the inclination angle y that is
formed by extending the major principal stress to the r
axis (Fig. 2b) as:

o, =o(l+sinpcos2y)—c-cotp (2a)
o, =0o(l-singcos2y)—c-cotp (2b)
7. =osingsin2y (2¢)

oy = Aoy = Ao(l+sing)—Ac-cotp , (2d)
and o =(0,+03)/2+c-cotp, ¢ is cohesive strength
and the tangential coefficient A is a ratio between oy
and 6;. A is taken as 1.0 by most of the researchers in
the past for simplicity which is known as the Harr and
Von Karman hypothesis but this ratio should lie
somewhere between 1 and K, and should be taken as a
Parter”  has
A=Ky=1-sing and K, in his analysis with limit

variable in  general. considered

equilibrium method.

Ty

Fig. 1 Cylindrical coordinate system and stress components

The characteristic lines for the solution are the «
and p

mobilized. In literature they are often referred to as slip

lines on which the shear strength is fully

lines, but their significance are related to the equations of
equilibrium instead of displacement. The geometry

dictates the slopes of the slip lines that can be written as:
dz T @
— =tan(y + where u=—-=- , (3)
5 (y +mu) H=7"7

and m takes the value —1 for an o line and +1 for an
£ line (shown in Fig.2(b)). These equilibrium and yield
equations form a set of hyperbolic partial differential
equations which will reduce to two ordinary differential
equations expressing the changes in stress along each
characteristic line in terms of the changing inclination

and position (r, z)

(1-A-Asing)g —c(1-A)cotg dr+
-

do+m2otanpdy +

m A(l+sing)o +c(1-A)cotd
r

To simplify the
normalized with the circular shaft radius in the form:

tan @dz = y(mtan dr + dz) (4

study, the wvariables will be

a=-2 r=L, Z:i,czi,gozq_ﬂ ,(5)
hy o o Y hy

where ry is the radius of the circular shaft, z is the
vertical depth under consideration, y is the unit weight of
soil, ¢y is the external surcharge. Substituting eqn.(5)

into eqn.s(3) and (4), we have:

dz T oo
— =tan(y + mu) where u=—-= , (6)
iR (y +myp) H=777
ds:+mzmanmd,,,,+('—i—fls'nsﬁ)f;—cf(l—z)comdm
mi(l+Sm¢)Q;C{]_Mcow?’tan@xiz=mtangadR+dZ_(7)
T
afi slip line
irection
pole
< A [+ o
slip li
diregfion
A

slip line

(b) :
Fig. 2 (a) Mohr circle under failure condition. (b) Sign

convention and notation

2 Simplified slip line solution
If we assume the slip lines to be straight lines in
the R-Z plane which are the assumptions as used by

Berezantzev, the inclination of /3 slip line is:

m=1, f,.f/:g:const and dZ:tan(%r—%)dRa(S)

Put eqn.(8) into eqn.(4), we obtain

d_Q_P(Hsin@)E_l]g_C(l—&) I+sing 1 (9)

dR cos’ @ R R sinpcosp  cosg
Let

L2
cos” @ 4 2

g:_‘;’lmnz(g%m (10b)
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Put eqn.(10) into eqn.(9), and the solution of
differential equation is:

R _C(l—&)(]+sin(p) (1)
(n—Dcose nsingcos @
Eqns.(2a)~(2d) are normalized with the shaft radius ry

Q=aR" +

and reduce to the following forms with eqn. (8):
Qp=Q(l-sinp)-C-cotp (12a)
Q, =Q(l+sing)-C-cotp , (12b)
Qg =AQ(1 +sinp)— AC-cotp , (12¢)
According to eqn.s(12a)~(12¢)and(11), the component
of stress tensor can be express as following:
(1-sing) R_ww(lﬂ?—ﬂ)c ,(13a)
(n-1cosg U
(1+sing)
(7—1cosep

Qp =a(l-sing)R" +

Q, =a(l+sing)R" + R-&C-cotp »(13b)

Qp =ak(l+sinkK)R" + MH{’ —&kC-cotg ,(13¢)
(n—1cosgp
Here Ry, denote the intersect of the S slip line which
pass through the point (1, Z) with R axis, so
T @
Ry=1+Z -tan(—-—) - (14)
b ( 175 )

On ground surface, Qle—R =0, » the integral
i ]
constant is then determined as:
a=Q0+§Cc0t¢_ 1 ] . (15)
RI(1+sing) (7-1)cosgR!™

Put eqn.(15) into eqn.s(13a)~(13c) and notice that:

Iosing _ 2 @y, losing_ w0
1+sing 4 2 cos @ 4 2
Eqn.s(13a)~(13c) will be simplified to:
T @
tan(— - —)
_ 4 2 R ;- Ry 21 @
Qp=R———=—[l - (— — —-——L
R ) [ (Rb} ]+Q0(Rb} tan (4 2)+
R s T @, 1-A+7n
ey an?® -2y 1A 0y (16a)
[§(Rb) an (4 2) ” Jcote
tan(%+%) R | R
Q;=R—F—=[1-(—)"" 1+ 0y (—)" +
z TG 1 Q)
ch[(i)’f—l]cotqo . (16b)
Ry,
tan(%+%) R | R
Qp=IR——=[1-(—)"""1+ 20, (—)" +
% p— [ (RbJ ] Qo(RbJ
AECIY 1cotg (16¢)
Ry,

In ean.(16.1). put R=1. the active earth nressure on

shaft lining is:

1-A4n_¢ ., 21 ¢ . (17)
C[ p tan (4 2}jlcotqo

So the actual active pressure can be obtained by eqn.(5)

das:
g
tan(———)
4 2 ! I 27T @
= M 1- +gyg—tan"(——=)—
Pa =70 ( R{f“) 90 % <7
AT 2B Pycotp (18)
n R,‘;’ 4 2
where

T
¥y +ztan(———
2)=0 (4 2).
2 o

When A4 =1, eqn.(10) becomes:

Rb=1+Z-tan(§—

— 2. U@ — L — 19
= tan + l=2tan@tan(—+ =) —lv( )
7 ( ) @ n(| 2) 5

and eqn.(18) becomes:

tan(E—%) | ’ T @
Pa=ro— (I_Rg'lqu_ﬁtan (1—5)—
I 2m @
ol -—tan?*(=—S)]cotp - (20)
[ Rl (7~ oty

Eqn.(20)is the same as Berezentzav’s original formula
for axi-symmetric active pressure. Eqn.s(17) and (18)
are more general in that A is now a variable. According
to eqn.(18), the active earth pressure can be formulated
as:

Pa = Kayrz + Kyqqo — Ko > ey
where the active earth pressure coefficients Kays Kags
Kac on shaft lining are defined as:

tan(E—E)
K -4 2" " T
ay —1)
n-1 -z zR!
tan(g—%) : |
= 1 {E_ — v, (22a)
- Z[1+ Z tan(— — )7~
[ (‘4 2)]
1 2 M@
K., =—tan“(—-
Rl (4 2)
~an’(G-9) ‘ ,  (22b)

T _Py
[l+Ztan(4 2)]

1-A+n £ 2, @
K, =[——-—=t — —)]cot
ac = ” Rl an (4 2)]cow
TP
. Stan®(7-)
:{l Avn 4 2 acotp - (220)

U 1+ Ztan(Z -2y
[ ﬂﬂ(4 2)]
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Because of arching action effect, the axisymmetric
active earth pressure must be smaller than or equal to
plane strain active pressure. For the first term of
eqn.(18), the quantity # must satisfy:

n-1=-1 . (23)
Put eqn. (23) in eqn.(10), we obtain:

/12tan2(45—%1=1<a .24

Hence the tangential stress ratio A will lie between 1.0
and K,. Using eqn.s (17) and (18), the upper and lower
estimates of the active pressure can be determined by
putting A =1.0 and K.

Obviously, when ry tends to infinity, an
axi-symmetric problem will degenerate to a plane
strain problem and Z tends to zero. According to eqn.s
(22a)~(22c¢), we can obtain coefficients of active earth

pressure in plane strain problem as:

29 noQ
Ky =Kyq =tan (Z_E)’ Kac:ha“(z_g)‘

Special considerations in axi-
symmetric active pressure
Eqn.s(22a)~(22¢) are not applicable when 7=0

or 7=1 Of =0 which has been neglected by

Berezantzev in the past. Considering firstly the case

of 77=0, according to eqn.(10), we get

A=K, =tan’(Z-%) . (25)
a ( 2 2)
Take eqn.s(22a)~(22c) to limit 7 — 0 and replace it
by eqn.(25), we get
Ky =Ky =tan>(>-2) (26a)
ay aq (4 P )

= T_¢ T _2yn.(26b
Ky 2tan(4 2){l+]n[1+Ztan(4 2)]}( )

Secondly, for the case of @=0, according to
eqn.(24) and considering that X is less than or equal to
1.0 we getA=1 and 77=0-
Put @ =0 intoeqn.(26a)~(26b), we obtain :
Ky =Ky =1 Kpe=2[1+In(1+2)] - (27)
Thirdly we consider the case of 77 =1 According
to eqn.(10), we get

2 n
-2 [Z2_ZX_p - (28)
@ = 2arctan 73 Per

If 77 tends to 1.0, put eqn.(29) into eqn.s (22a)~(22c¢),
we get

a'rr

‘F""l ,,0”,/,1 ‘Fln(HzJM ) (29a)

Kﬂﬂ -
2 +2d2/2 21424402
c V2200 +2:J272) _22(+224272)  (29¢)
RN Sy 1+ 2272
According to eqn.(21), we obtain
2 rytzdA/2 /1 I
Pa =0oy |7 I ——t g s —— =
A To ) fo+z a2
Cﬂ{ro +2z41/2) . (30)
rg+z4 A2

According to the first term of eqn.s(18) and (30), it is
concluded that if ¢> ¢, (see eqn.(28)), active earth
pressure induced by self weight of soil attains a
limiting value as z tends to infinity. If v<a, - the
active pressure will tend to infinity as z tends to
infinity. When X=1, P 1S

approximately 19.5° while the general critical angle

the critical angle
@, Will increase with decreasing A in accordance
with eqn.(28).

Finally for the case of A=K;=I1-sing as
adopted by Prater using Coulomb’s method, from
eqn.(10) we can write

=sing, f=sec?(Z+2y . (3D
n @, S=sec”( 7 2)
Put eqn.(31) to eqn.s(22a)~(22c¢), we obtain
tan(3 - %)

- 4 2 T P l-sing 32a)
Ky, = o )Z{[I+Ztan( )] —13(

1

Koy = — tan2(Z -%), (32b)
1+ Z tan(— — )¢
[ S e
Koe =12- 1 - Secz(z—ﬂ)}cotgo' (32¢)
[l +Ztan(§—%)]“"‘° 42
According to the eqn.(21), we obtain as
tdn(— - —) tan” (— - —)
P3=W0#(Rl sing -1 +qo 4
l-sing R;'”"’
c[2——sec2( ~icoto - (33)
Rgll‘lgo 2

According to the first term of eqn.(33), the active earth
pressure induced by the self weight of soil will tend to
infinity if Z tends to infinity. Prater considered that the
active pressure based on tangential stress coefficient

Ky is accentable in engineering usel™,

4 Characteristics of active earth
pressure on shaft lining
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After normalization by the radius of shaft, Ky, Ka,
K, are formulated in terms of the dimensionless depth Z
but is independent on the shaft radius. Ky, Ky, Ky are
hence expressed in terms of dimensionless depth Z but
not the shaft radius. Computations of Ky, K., Kic for
different tangential stress coefficient i are shown in Fig.
3 = 5. It can be seen that the influences of & on K, K,
K, are very significant and cannot be simply taken as
1.0 in Harr-Von Karman’s hypothesis. The smaller is A,
the greater will be the values of K, Kug, Kic. If A is
greater than K, Ky, Kyq will tends to zero while Kac will
tends to a maximum value as the dimensionless depth Z
tends to infinity. If & is equal to K, according to eqn.(26),
Kay, Kiq are constant and are equal to K, while K. will

tend to infinity as dimensionless depth Z tends to infinity.

0.25

Fig. 4 Variation of K, with dimensionless depth Z and . for

@=40°
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Fig. 5 Variation of K. with dimensionless depth Z and & for
@=40°

Fig. 6 - 8 show the variation of K, Ki, Ki with
dimensionless depth Z for various internal friction angle
while A is set to at-rest earth pressure coefficient
(Ky =1-sing ). The smaller ¢ is, the greater will be the

values of K,,, Ky, Ko which is obvious. If ¢ is greater
than zero, K,,, K,q will tend to zero and K. will tend to a
maximum value as the dimensionless depth Z tends to
infinity. If ¢ is equal to zero, K,,, K,q are constant and

equal to unity while K, tends to infinity as the

dimensionless depth Z tend to infinity.
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Fig. 8 Variation of K. with dimensionless depth Z and ¢ for A=K

In actual practice, the active earth pressure induced
by self weight of soil is the most important consideration
and the critical internal friction angle ¢, with the
tangential stress coefficient A is shown in Fig. 9 which is
defined by eqn.(28). If the internal friction angle is
smaller than or equal to that critical friction angle ¢,
with a specific 4, the earth pressure induced by the self
weight of soil will tend to infinity as dimensionless depth
Z increases. Beyond that, the active pressure due to self
weight of soil will however attain a maximum value as Z
tends to infinity. The variation of earth pressure with
dimensionless Z for some A at a critical friction angle
@ 1s shown in Fig.10.

5 Conclusions
Field measurements have shown that the original
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Fig. 10 Variation of p, /ryy with dimensionless depth Z for

different ¢, Ky in figure

equation by Berezantzev is not correct which may be a
reason that Berezantzev’s solution is seldom adopted in
practice. The tangential stress coefficient A initiated by
Prater is introduced in the present study and
Berezantzev’s solution is modified in the present paper.
The active earth pressure is formulated and the results
show that Berezantzev’s original theory where
A=ldelivers the lowest value of earth pressure which
may be risky in shaft lining design. The modified
solutions in the present paper can be adopted to
overcome the weakness of Berezantzev’s formulation.

The results in Fig. 3 -5 for active earth pressure
coefficient Ky, Kig,
coefficients are very sensitive to the assumed tangential

K,. have shown that these

stress coefficient A acting on radial planes. If 1 is greater
than K,, Ky, Kiq will tend to 0 while Kac will attain a
maximum value with increasing Z. If K, K,q are both
equal to K, which is earth pressure coefficient for plane
strain problem, K,,, K,q are constant and are equal to K,
while K. will tend to infinity as dimensionless depth Z
tends to infinity. Eqn.(24) shows that A must be greater
than the active Rankine value of plane strain for realistic
axi-symmetric results. However, if / is set equal to unity
as is originally assumed by Berezantzev’s theory,
simplified slip line method will produce the minimum
active earth pressure which is not safe. To be on the safe
side, Prater suggested that A should be set equal to the
earth pressure coefficient at rest Kjp. The present
formulation allows any tangential stress coefficient to be

adopted. More importantly, the range of active pressure

can be estimated.

Fig. 6 - 8 shows that the internal friction angle ¢
takes an important role on active earth pressure
coefficient Ky, Kag, Kac. It is found that the greater is the
internal friction angle ¢, the greater will be the arch
action. If ¢ is set equal to 0, K, K,q are both equal to 1.0
which is the same as the active earth pressure coefficient
for plane strain problem. The earth pressure coefficients
should generally be calculated with eqn.(18) and
eqn.s(22a) - (22¢) while the corresponding formulae for
particular cases are also provided in the present paper.

Attention was paid to the active earth pressure
induced by the self weight of soil. Fig. 9 shows that the
critical angle ¢, is closely related to the tangential
stress coefficient A. If the realistic internal friction angle
is smaller than critical angle, the earth pressure caused
by self weight does not attain a maximum limit as Z
increases. If 1 is set equal to the earth pressure
coefficient at rest Ko(=1-sing), as is shown in first
term of eqn.(34), the earth pressure induced by itself
weight will not be limited if Z tends to infinity which
more differ from Berezantzev’s results. The authors
consider that active earth pressure based on a tangential
stress coefficient Ky (the coefficient of earth pressure at

rest) is suitable for engineering.
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