变化淹没水位下供水管道渗漏诱发砂土流化启动准则解析

林存刚 1,2,3,4, 彭程 1, 李丁伟 1, 龚婉仪 1, 马保松 1,2,3,4

(1. 中山大学土木工程学院,广东省地下空间开发工程技术研究中心,广东 广州 510275; 2. 隧道工程灾变防控与智能建养全国重点实验室,广东 广州 510275; 3. 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082; 4. 广东省海洋土木工程重点实验室,广东 广州 510275)

摘 要:供水管道渗漏诱发上覆砂土流化是导致地层空洞和地面塌陷的重要原因,目前试验与理论研究普遍针对连续级配饱和砂土,尚待探究非饱和与间断级配工况。综合考虑砂土粒径与级配、管道淹没水位与覆土深度、渗漏口尺寸等影响因素,基于流化区域内砂土自重与渗透力平衡,推导得到变化淹没水位下供水管道渗漏诱发砂土启动流化流量解析公式,并经模型试验验证了其适用性。参数分析发现,降低淹没水位、提高砂土粒径和覆土深度,可有效降低砂土启动流化流量,而渗漏口尺寸变化对其影响并不显著。此外,针对管道渗漏及上覆砂土流化无固定边界的实际情况,提出经验修正 Ergun 方程,以更适用于供水管道局部渗漏工况下上覆砂土流体压降的描述。 关键词:供水管道;砂土流化;启动流量;淹没水位;间断级配 中图分类号:TD853.34 文献标识码:A 文章编号:1000-4548(2018)03-xxxx-xx 作者简介:林存刚(1986-),男,山东临沂人,博士、副教授,主要从事盾构隧道与地下管道环境效应、土与结构相互作用及地基渗蚀塌陷防控研究。

Formulation of initiation criterion for water supply pipe leakage-induced sand fluidization under varying inundation levels

LIN Cungang^{1,2,3,4}, PENG Cheng¹, LI Dingwei¹, GONG Wanyi¹, MA Baosong^{1,2,3,4}

(1. Guangdong Research Center for Underground Space Exploitation Technology, School of Civil Engineering, Sun Yat-sen University,

Guangzhou, Guangdong 510275, China; 2. State Key Laboratory for Tunnel Engineering, Guangzhou, Guangdong 510275, China; 3. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai, Guangdong 519082, China; 4. Guangdong Key

Laboratory of Marine Civil Engineering, Guangzhou, Guangdong 510275, China)

Abstract: Leakage from water supply pipelines can induce fluidization of overlying sand, leading to subsurface voids and ground subsidence. Most research focuses on continuously graded saturated sand, neglecting unsaturated and intermittently graded conditions. This study considers factors such as sand particle size, grading, pipeline submergence level, overburden depth, and leakage orifice size. An analytical formula is derived for the initiation flow rate of sand fluidization under varying submergence levels, based on the balance of sand's weight and seepage forces. Model tests validate this formula. Results show that reducing submergence levels, increasing sand particle size, and overburden depth decrease the initiation flow rate, while orifice size has minimal impact. The Ergun equation is empirically modified to better describe fluid pressure drop in sand under local pipeline leakage conditions.

Key words: water supply pipeline; sand fluidization; initiation flow rate; submerged water level; intermittent grading

0 引 言

流态化,简称流化,是指固体颗粒在流体作用下 呈现出类似流体状态的现象。供水管道渗漏诱发周围 砂层流化是造成地层空洞和地面塌陷的重要原因¹¹。 在供水管道局部渗漏工况下,明确上覆砂土的启动流 化准则,对于评估地层流化风险和制定防控措施具有 指导价值。针对完全饱和连续级配砂土,国内外学者 采用理论解析、模型试验和数值模拟等方法探究了其 在理论解析方面,目前已经建立了关于启动流化

启动流化准则,概述如下。

基金项目:广东省基础与应用基础研究基金 (2023A1515030243, 2024A1515011200);珠海市基础 与应用基础课题研究项目(ZH22017003210005PWC); 广东省"珠江人才计划"引进创新创业团队项目 (2021ZT09G087),国家自然科学基金(42477202) 收稿日期: 2024 - 06 - 28 *通讯作者(lincg@mail.sysu.edu.cn) 流量和启动流化压降等多个启动流化关键参数的计算 公式。Shi等^[2]推导了二维锥形流化床内流化空洞初现 时的流体速度与最大压降;Alsaydalani^[3]基于流化区 域内渗透力与砂土自重的平衡,推导出二维锥形流化 床内流化启动流速与压降的理论公式。在模型试验方 面主要探究了砂土流化的发展过程与影响因素。 Alsaydalani^[3]开展了二维模型试验观测局部向上射流 作用下饱和连续级配砂土流化现象。在数值模拟方面, 离散元(DEM)与流体动力学(CFD)的耦合计算已成为 分析砂土流化准则的有力工具。Cui等^[4]通过 CFD-DEM 数值模拟分析饱和砂土流化,发现渗漏口 直径越小,所需临界水压越大;Nguyen 和 Nguyen^[5] 通过 VOF-DEM 模拟发现,相较于饱和砂土,干燥砂 土在管道渗漏下流化启动需要更高的流体流速。

综上所述,目前已建立的供水管道渗漏诱发砂土 流化理论准则普遍针对管道上覆连续级配饱和砂土; 在此工况下,模型试验与 CFD-DEM 数值模拟重点探 究了砂土粒径、覆土深度、渗漏口尺寸及上覆荷载等 因素的影响。然而,在工程实际中,供水管道淹没水 位通常低于覆土深度,并受降雨和水文地质条件影响 而变动。此外,由于管道回填作业标准差异,供水管 道上覆砂土并不总是连续级配砂土,间断级配情况也 普遍存在。因此,目前针对供水管道渗漏诱发饱和连 续级配砂土流化的研究,尚待扩展讨论间断级配砂土 与变化淹没水位工况。

针对现有研究不足,本文对供水管道变化淹没水 位条件下连续与间断级配砂土的启动流化流量 Qc(使 上覆砂层开始出现稳定流化空洞时的管道渗漏流量) 进行推导,并通过室内模型试验验证其适用性。此外, 参数分析探究了管道淹没水位、砂土有效粒径、覆土 深度及渗漏口尺寸对砂土启动流化流量的影响。

1 理论推导

1.1 力学模型与基本假定

基于供水管道渗漏诱发上覆砂土流化二维模型试验,构建其力学模型如图1所示。供水管道渗漏口设置为贯穿纵缝,对其上部砂土区域进行分析。图中, 流化影响区域为砂土颗粒在流体及流化空洞作用下发 生位移的区域;静止区域是砂土颗粒未产生位移的区 域。图中,h为距离管道渗漏口的高度(m); *H*_w为管 道顶部淹没水位(m); *H*_s为管道顶部覆土深度(m); *L* 为高度 *h* 处流化影响区域宽度(m); *L*w 为高度*H*_w处 流化影响区域宽度(m); *L*s 为高度*H*_s处的流化影响区 域宽度(m); *L*o 为管道渗漏口纵缝宽度(m); *W* 为管道 渗漏口纵缝长度(m); *O* 为流化角(°),表征流化影响 区域与静止区域的分界线与水平线的夹角,其数值较 为稳定,可通过模型试验测量获得。

图 1 供水管道渗漏上部砂土流化区域示意图

Fig.1 Schematic diagram of sand and soil fluidization area on the

upper part of the water supply pipeline

砂土启动流化流量的理论推导基于以下假定和简化:(1)渗漏流体沿垂直方向流动,忽略横向流动,且 流体在砂层任意横截面积上均匀分布;(2)假定供水管 道渗漏后,渗漏流体仅在流化角限定的锥形区域内发 生流动;(3)忽略砂土颗粒间的摩擦力。

1.2 Ergun 方程的经验修正

经典的 Ergun 方程^[6](见式(1))系基于大量圆柱状 流化床内均匀颗粒流化模型试验统计分析提出,用以 描述流化床内流体压降与其表观速度之间的数学关 系;其被广泛应用于砂土启动流化流量推导。然而, Ergun 方程的适用性受限于圆柱状固定壁面内的均匀 粒径砂层,而实际中渗漏管道上部砂土不存在固定流 化壁面边界,且存在间断级配砂土情况。由于 Ergun 方程原型试验条件与供水管道渗流工况的差异,因此 其用于描述渗漏管道上覆砂土流体压降时并不理想。 鉴于此,本文考虑供水管道渗漏诱发上覆砂土流化的 实际工况,考虑渗漏口纵缝宽度、淹没水位处流化影响区域宽度及管道渗漏口流速等因素对渗漏流体压降的影响,对传统 Ergun 方程加以修正,以提高其适用性。修正后的 Ergun 方程见式(2),后续将评估其用于计算供水管道渗漏下上覆砂层流体压降的适用性(见图 6),并将用于砂土启动流化流量解析。

$$\frac{\mathrm{d}P}{\mathrm{d}h} = AU + BU^2 \tag{1a}$$

$$A = \frac{150\mu}{\phi_{\rm s}^2 d_{\rm p}^2} \frac{(1-\varepsilon)^2}{\varepsilon^3}$$
(1b)

$$B = \frac{1.75\rho_{\rm w}}{\phi_{\rm s}d_{\rm p}} \frac{(1-\varepsilon)}{\varepsilon^3}$$
(1c)

$$\frac{\mathrm{d}P}{\mathrm{d}h} = (A + \frac{U_0 L_0 B}{L_w})U \tag{2}$$

式中, dh 为沿流体方向任意砂土微元高度(m); dP 为 流体流经 dh 砂土微元时孔隙水压力改变量(Pa); ϕ_s 为 固体颗粒的球形度(量纲为一); d_e 为颗粒平均粒径 (m); U 为流体的表观流速(m/s); ε 为流化床内颗粒 孔隙率(量纲为一); μ 为流体的动力粘度(Pa·s); U_0 为 流体在渗漏口处的流速(m/s); ρ_w 为流体密度(kg/m³)。

1.3 平均粒径 dp 的取值

流体流经颗粒材料时,压降受颗粒渗透系数影响; 而其又受控于平均粒径 dp、孔隙率 *ε*、流体动力粘度 μ。在 Ergun 方程当中,如式(1b)和(1c), dp 是表征 颗粒材料渗透系数的重要参数,其量值与渗透系数正 相关。因此,平均粒径 dp 的取值对于流体压降的准确 计算非常关键。

对于连续级配砂土, Ergun 方程被广泛应用于渗漏流体压降的计算^[3]。若已知砂土的颗粒级配, 其平均粒径 *d*p可由各粒组按质量的加权平均计算, 即式(3)^[7]。

$$d_{p} \models \sum_{i} \overline{d_{i}} x_{i} \tag{3}$$

式 中 , $\overline{d_i}$ 是 各 粒 组 的 平 均 粒 径 (m) , $\overline{d_i} = (d_{i+1} + d_i)/2; x_i$ 是各粒组占砂样总质量的百分 比(量纲为一)。

对于连续级配砂土,由式(3)计算所得平均粒径 *d*_p 与其渗透系数 *K* 的关系满足 Kozeny-Carman 方程 ^[8](见式(4)和(5)),因此 *d*_p 可较好地反映砂土渗透系数 的差异,其可作为表征渗透系数的参量代入 Ergun 方 程。而对于间断级配砂土,由式(3)计算所得 *d*_p 与其 *K* 不再符合 Kozeny-Carman 方程,其与渗透系数的对应 关系尚缺少验证,因此其无法代入 Ergun 方程用于表 征砂土渗透系数。

$$K = \frac{k\rho_{\rm w}g}{\mu} \tag{4}$$

$$k = \frac{d_{\rm p}^2}{180} \frac{\varepsilon^3}{(1-\varepsilon)^2} \tag{5}$$

式中, K 为渗透系数(m/s); k 为渗透率(m²)。

为使 Ergun 方程适用于间断级配砂土工况,基于 间断级配砂土与连续级配砂土实测渗透系数的比例关 系,基于式(4)和(5),提出一种可表征间断级配砂土渗 透系数的有效粒径(即等效连续级配砂土粒径)计算方 法,见式(6)。

$$d_{\rm p}^{\rm i} = d_{\rm p}^{\rm c} \sqrt{\frac{K_{\rm i}(1-\varepsilon_{\rm i})^2 \varepsilon_{\rm c}^3}{K_{\rm c}(1-\varepsilon_{\rm c})^2 \varepsilon_{\rm i}^3}} \tag{6}$$

式中, d_{p}^{i} 为间断级配砂土的有效粒径(m); d_{p}^{c} 为连续级配砂土平均粒径(m),可由式(3)计算; K_{i} 和 K_{c} 分别为间断与连续级配砂土渗透系数(m/s); ε_{i} 和 ε_{c} 分别为间断和连续级配砂土孔隙率(量纲为一)。

1.4 砂土启动流化流量推导

对图/1所示锥形流化范围内砂土进行受力分析, 认为当流体对砂土的渗透力 F 与砂土有效重量 Wa 平 衡时^[2,3],流化开始发生,即

$$F - W_a = 0 \tag{7}$$

首先截取任意 h 位置高 dh 的砂床微元进行有效重量计算。当微元段位于水位以下,其处于饱和状态, 有效重量 dW_a为:

$$dW_{a} = (\rho_{s} - \rho_{w})g(1 - \varepsilon)WLdh \qquad (8a)$$

当微元段位于水位以上时,忽略毛细作用,其呈 干燥状态,有效重量 dW_a为:

$$dW_{a} = \rho_{s}g(1-\varepsilon)WLdh \tag{8b}$$

式中, ρ_s为颗粒密度(kg/m³); g 为重力加速度(N/kg)。 由图 1(a)可得高度 h 处砂床宽度 L 与渗漏口纵缝

宽度 L_0 之间的几何关系:

$$L = L_0 + 2h\cot\theta \tag{9}$$

将式(9)代入式(8), 消去变量 L, 可得:

 $dW_a =$

$$\begin{cases} (\rho_{s} - \rho_{w})g(1-\varepsilon)W(L_{0} + 2h\cot\theta)dh, 微元段饱和 (10) \\ \rho_{s}g(1-\varepsilon)W(L_{0} + 2h\cot\theta)dh, 微元段干燥 \end{cases}$$

当淹没水位 Hw 低于覆土深度 Hs 时, 锥形砂床整体有效重量 Wa为:

$$W_{a} = \int_{0}^{H_{w}} (\rho_{s} - \rho_{w})g(1 - \varepsilon)W(L_{0} + 2h\cot\theta)dh$$

+
$$\int_{H_{w}}^{H_{s}} \rho_{s}g(1 - \varepsilon)W(L_{0} + 2h\cot\theta)dh$$
(11)
=
$$g(1 - \varepsilon)(\rho_{s} - \rho_{w})WH_{w}(L_{0} + H_{w}\cot\theta)$$

+
$$g(1 - \varepsilon)\rho_{s}W(H_{s} - H_{w})(L_{0} + H_{w}\cot\theta + H_{s}\cot\theta)$$

当 H_w 大于 H_s 时,继续增大淹没水位 H_w 不会增 大砂床的有效重量,此时有效重量保持恒定,即式(11) 中令 $H_w = H_s$ 的计算结果。

锥形流化区域内单位体积砂土的渗透力 j 为^[9]

$$j = \gamma_{w}i = \gamma_{w}\frac{\mathrm{d}P}{\gamma_{w}\mathrm{d}h} = \frac{\mathrm{d}P}{\mathrm{d}h}$$
(12)

式中, *j* 为单位体积砂土的渗透力(N); *i* 为流体的水力 梯度(量纲为一)。

则微元段砂土所受渗透力 dF 为

$$dF = jWLdh = \frac{dP}{dh}WLdh = WLdP$$
(13)

$$\mathrm{d}F = WL(A + \frac{U_0 L_0 B}{L_w})U\mathrm{d}h \tag{14}$$

于是,流体淹没范围内锥形砂床所受渗透力F

$$F = \int_{0}^{H_{w}} (WL)(A + \frac{U_0 L_0 B}{L_w}) U dh$$
 (15)

基于前述基本假定,锥形砂床内不同高度处流体 流量相等,从而得到:

$$U_0 W L_0 = U W L = U W (L_0 + 2h \cot \theta)$$
(16)

$$U = \frac{U_0 L_0}{L + 2h \cot \theta} \tag{17}$$

将式(9)与式(17)代入式(15), 消去变量U 与L, 从而得到:

$$F = WL_{0}(A + \frac{U_{0}L_{0}B}{L_{w}})U_{0}\int_{0}^{H_{w}} dh$$

$$= WL_{0}AU_{0}H_{w} + \frac{WL_{0}^{2}BU_{0}^{2}H_{w}}{L_{0} + 2H_{w}\cot\theta}$$
(18)

将式(11)与式(18)代入式(7),可得:

$$WL_0AU_0H_w + \frac{WL_0^2BU_0^2H_w}{L_0 + 2H_w\cot\theta} -$$

 $g(1-\varepsilon)(\rho_s - \rho_w)WH_w(L_0 + H_w\cot\theta)$ (19)
 $-g(1-\varepsilon)\rho_sW(H_s - H_w)(L_0 + H_w\cot\theta + H_s\cot\theta)$
=0

式(19)是关于供水管道渗漏流速U₀的一元二次

方程,对其进行求解,可得:

$$U_{0} = \frac{-b + \sqrt{b^{2} + 4ac}}{2a}$$
(20a)

$$a = \frac{WL_0^2 BH_w}{L_0 + 2H_w \cot\theta}$$
(20b)

$$b = WL_0 AH_w \tag{20c}$$

$$c = g(1-\varepsilon)(\rho_{s} - \rho_{w})WH_{w}(L_{0} + H_{w}\cot\theta) +g(1-\varepsilon)\rho_{s}W(H_{s} - H_{w})(L_{0} + H_{w}\cot\theta + H_{s}\cot\theta)$$
(20d)

以上推导基于前述基本假定与简化处理,特别是 假定管道渗漏流体仅在锥形区域内沿垂直方向流动, 这相当于在管道渗漏口上方设定了一个具有固定边界 壁面的锥形流化床,然而实际上,除流化影响区域内 存在管道渗漏流量,渗漏流体也会向周围静止区域逸 散。而以上假定忽略了砂层静止区域内的逸散流量, 将导致理论推求流化启动流量较实际偏小。

为考虑向上局部射流下砂土无固定边界流化的实际工况,Weisman等^[10]和Thaha等^[11]开展模型试验研究了无固定边界流化中流体朝向流化区域外的逸散问题。Weisman等^[10]和Thaha等^[11]分别试验发现,在流化开始前,流化区域外的逸散流量约占管道渗漏流量的40%和50%。基于试验观测,Thaha等^[11]对有边界壁面的流化现象(如化工领域的流化床)与无边界壁面的管道渗漏砂土流化现象的启动流化速度进行了比较,提出在有界流化启动流量基础上乘以速度转换系数*K*s,以计算无界流化启动流量基础上乘以速度转换系数*K*s,以计算无界流化启动流量;该系数在在保守估计下建议取值为 2。考虑管道上覆流化区域外流量的逸散,本文采纳Thaha等^[11]的速度转换系数*K*s并取值为 2,对式(20)加以修正,从而得到符合管道局部渗漏无界流化情况的启动流化流量理论公式:

$$Q_{\rm c} = K_{\rm s} \frac{-b + \sqrt{b^2 + 4ac}}{2a} L_0 W \tag{21}$$

应用式(21)可对不同淹没水位下的供水管道渗漏 砂土启动流化流量进行计算; 当淹没水位大于覆土深 度时,取淹没水位 *H*w = *H*s。针对连续与间断级配砂 土,平均粒径 *d*p 分别按式(3)和(6)计算。

2 试验验证

笔者设计搭建了一套供水管道渗漏诱发砂土流化 模型试验装置,如图2所示。下面将基于该装置开展 模型试验对前述推导所得启动流化流量理论公式加以 验证,并开展相关参数分析。

2.1 试验装置及试验方案

2.1.1 供水管道渗漏诱发砂土流化试验装置

如图2所示,本文该装置由模型箱体、供水系统、 水压采集系统与图像采集系统四部分组成:在试验过 程中,水体在系统中保持动态流动状态。供水系统向 模型箱体注入水体,模拟供水管道渗漏;图像采集系 统用于记录砂土流化现象及影响范围;水压采集系统 用于监测供水管道管内水压与砂土孔隙水压力变化; 量筒则用于测量供水管道渗漏流量。各系统详细介绍 见文献[12]。

图 2 供水管道渗漏砂土诱发流化试验装置示意图

Fig.2 Schematic diagram of sand induced fluidization test device

for water supply pipeline leakage

2.1.2 试验用砂及其物理力学参数

试验用砂为普通石英砂,共5种,编号A1~A5。 其中 A1、A2、A3 为连续级配砂土; A4 与 A5 为间断 级配砂土,通过 A1 与 A3 砂样按设计质量比例混合得 到。通过筛析法确定各砂样颗粒级配情况,见图3。

经室内土工试验获得各砂样物理力学参数,统计 于表 1; 其中,由比重瓶法测得比重,由相对密实度 试验得到最大与最小干密度,由直接剪切试验得到内 摩擦角,由常水头渗透试验得到渗透系数。

在土工试验(包括直接剪切试验与常水头渗透试 验)及后续供水管道渗漏砂土流化试验中,砂样相对密 实度统一设为60%。根据测得的各砂样最大和最小干 密度,结合给定相对密实度,计算可得各砂样试验所 需密度,见表1。

表1 试验用砂物理力学参数

Tab.1 Physical and mechanical parameters of experimental sand

砂	比重	最小干密度	最大干密度		孔隙率	内摩擦角	渗透系数	不均匀系	曲率系数
样	$G_{ m s}$	$ ho_{ m min}$ (kg/m ³)	$ ho_{ m max}$ (kg/m ³)	ho (kg/m ³)	Е	arphi (°)	<i>K</i> (m/s)	数 <i>C</i> u	C_{c}
A1	2.670	1265	1669	1480	0.446	48.34	0.00393	1.44	1.020
A2	2.683	1261	1637	1463	0.455	40.20	0.00099	1.46	0.960
A3	2.688	1217	1530	1387	0.484	37.80	0.00051	1.46	0.960
A4	2.674*	1284	1723	1545	0.422	47.71	0.00084	6.26	2.489
A5	2.677*	1284	1788	1516	0.434	43.42	0.00046	1.71	0.964

注: 1. *间断级配砂土比重按照重量比例由连续级配砂土比重计算得来,其中 A4 砂土 $G_{
m s}$ =2.670×0.8+2.688×0.2≈2.674, A5 砂土

Gs = 2.670×0.4+2.688×0.6≈2.677; 2. 不均匀系数 Cu和曲率系数 Cu根据图 3 所示颗粒级配曲线计算获得。

2.1.3 砂土流化模型试验工况

本文设计了 11 类供水管道渗漏砂土流化试验工 况,编号 C1~C11,详细参数见表 2。工况设置旨在 系统分析不同变量对启动流化流量的影响: C1、C2、 C3 工况探究淹没水位的影响; C3、C4、C5 工况探究 砂土颗粒粒径的影响; C4、C6、C7 工况探究砂土颗 粒级配的影响:C8、C9、C10工况探究覆土深度的影 响; C4、C10、C11 工况探究渗漏口尺寸的影响。在 每类工况下,通过调整管内水压进行多组供水管道渗 漏试验,以确定砂土启动流化流量。

2.1.4 砂土流化模型试验步骤与流化现象

具体试验步骤如下:

(1) 供水准备:设定模型土箱溢水板高度,安装 水压力计并开启数据采集仪,调整供水箱与排水箱至 设定高度;开启阀门,待水流充满管道并沿溢水板溢 出后关闭阀门。

(2) 砂样装填: 根据所需密度计算砂土质量, 分 层装入模型土箱,每层厚 4~5 cm,使用压实装置控制 密实度,直至达到所需覆土深度。

(3) 图像采集系统调试: 将工业相机置于模型土 箱前合适位置,开启 LED 灯,调整其亮度与相机焦距, 以确保满足试验拍摄要求。

(4) 流化试验及数据采集:启动供水管道渗漏试验,试验时长 1 min;通过量筒测得供水管道渗漏流量;通过水压力计测得供水管道水压与砂土孔隙水压;通过工业相机记录砂土流化现象。

(5)数据处理:整理采集数据,进行供水管道渗漏流量、砂土孔隙水压力等分析;清洗并烘干试验砂

土,以备循环使用。

(6) 改变水压并重复试验:调整供水箱与排水箱 高度以改变供水管道水压,重复步骤(1)至(5),获取每 类工况下砂土启动流化流量 Qc 与砂土完全流化流量 Qm (使流化空洞达到最大高度,即砂层临界破坏时的 供水管道渗漏流量)。

表 2 管道渗漏砂土流化试验工况汇总表

1ab.2 Summary Table of Pipeline Leakage Sand Fluidization Test Conditions									
工况	试验砂土	设计淹没水位	覆土深度	渗漏口纵缝宽度	管内水压				
C1*	1~2 mm(A2)	0 cm	15 cm	5 mm	3~25 kPa				
C2*	1~2 mm(A2)	7 cm	15 cm	5 mm	3~25 kPa				
C3*	1~2 mm(A2)	17 cm	15 cm	5 mm	3~25 kPa				
C4*	0.5~1 mm(A3)	17 cm	15 cm	5 mm	3~25 kPa				
C5*	2~5 mm(A1)	17 cm	15 cm	_5 mm	3~25 kPa				
C6#	$0.5 \sim 1 \text{ mm}(60\%) + 2 \sim 5 \text{ mm}(40\%)(A5)$	17 cm	15 cm	5 mm	3~25 kPa				
C7#	$0.5 \sim 1 \text{ mm}(20\%) + 2 \sim 5 \text{ mm}(80\%)(A4)$	17 cm	15 cm	5 mm	3~25 kPa				
C8*	0.5~1 mm(A3)	17 cm	9 cm	2 mm	3~25 kPa				
C9*	0.5~1 mm(A3)	17 cm	12 cm	2 mm	3~25 kPa				
C10*	0.5~1 mm(A3)	17 cm	15 cm	2 mm	3~25 kPa				
C11*	0.5~1 mm(A3)	17 cm	15 cm	3 mm	3~25 kPa				

注:*为连续级配砂土工况,*为间断级配砂土工况, 试验观测砂土典型流化现象如图4所示。随供水 管道渗漏流量逐步增加,砂床依次经历以下三个阶段:

(1) 静止阶段:如图 4(a)所示,在较低供水管道 渗漏流量下(Q<Q_c),由于流体渗透力很小,不足以 导致渗漏口周围砂土颗粒移动,因此砂床整体处于静 止阶段。

(2)稳定流化空洞阶段:如图 4(b)所示,随供水管道渗漏流量逐渐增加,流体渗透力也相应增大,致 使渗漏口周边砂土颗粒受到冲刷并移动,进而形成流 化空洞;在某一固定渗漏流量下(Q_c≤Q<Q_m),流化 空洞高度始终小于供水管道覆土深度,其形态可保持 稳定不发展,此时处于稳定流化空洞阶段。

如图 4(b)所示,流化空洞区域主要由流体构成, 同时裹挟少量土颗粒,是流化现象的核心区域;流化 影响区域则是砂土颗粒在流体及流化空洞作用下发生 位移的区域,其几何形状呈锥形;静止区域是砂土颗 粒未产生位移的区域;流化角则是流化影响区域与静 止区域的分界线与水平线的夹角。

(3) 完全流化阶段:如图 4(c)所示,当供水管道 渗漏流量大到一定程度时(*Q*≥*Q*_m),砂床将无法维持 稳定流化空洞状态,空洞贯穿砂层致使其表面出现明 显抬升,此时砂层流化区域呈锥形(仅为部分流化影响 区域),处于完全流化阶段。

(a) 静止阶段($Q < Q_c$)

(b) 稳定流化空洞阶段($Q_c \leq Q < Q_m$)

(c) 完全流化阶段($Q \ge Q_m$) 图 4 不同管道渗漏流量下的砂土流化现象

Fig.4 The phenomenon of sand fluidization under different pipeline leakage flow rates

2.2 模型试验结果与理论验证

2.2.1 传统与修正 Ergun 方程对比验证

采用两种方法计算上述各工况砂土平均粒径:(1) 所有工况砂土均用式(3)计算,即按照各粒组质量权重 确定;(2)连续级配砂土(C1~C5、C8~C11工况)粒径 由式(3)确定,间断级配砂土(C6和C7工况)粒径由式 (6)以A2砂土参数为基准确定,参数取值详见表1与 表3。以A2砂土参数为基准,定义各工况砂土相对粒 径与相对渗透系数(公式见图5),其对应散点见图5。

从图 5 中可见,对于各连续级配砂土工况,由式 (3)计算所得平均粒径的变化基本可等比例反映渗透 系数的变化,因此其可作为渗透系数的有效表征。对 于间断级配工况,基于式(3)计算的相对粒径远大于相 应的相对渗透系数,即计算粒径与渗透系数的散点偏 离 1:1 基准线较远,因此该计算粒径无法等比例反映 渗透系数的差异;相较而言,基于式(6)计算所得的散 点,均落在 1:1 基准线上,故其有效粒径同连续级配 工况一样,可以作为砂土渗透系数的有效表征。

Fig.5 Comparison of calculated average particle size values

formula calculated values

对 C1~C11 工况在启动流化流量条件下的压降 数据进行分析, 计算并比较在 *h*=1.3 cm~3.8 cm 区间 的压力梯度试验测量值与公式计算值。将各工况参数 (见表 3)代入式(1)和(2),分别得到由传统 Ergun 方程 和修正 Ergun 方程的计算压降,结果同试验结果一并 展示于图 6。图中可见,传统 Ergun 方程计算压降较 试验值明显偏大,而修正 Ergun 方程计算结果与试验 值更为吻合,这反映了其在供水管道渗漏砂层内部流 体压降描述方面的适用性。

2.2.2 砂土启动流化流量理论公式验证

前述各工况经模型试验测得砂土启动流化流量 Qc。下面将基于试验结果对本文推导所得理论公式加 以验证,计算所需参数取值见表 3。对于粒径取值, 连续级配砂土(C1~C5 工况,C8~C11 工况)由式(3)计 算得到平均粒径;间断级配砂土(C6 与 C7 工况)由式 (6)并以 A2 砂土参数为基准算得有效粒径。为便于对 比分析,间断级配砂土也展示了使用式(3)计算得出的 平均粒径结果。 表3压力梯度计算与启动流化流量计算相关参数取值

Tab.3 Parameter values related to pressure gradient calculation and start-up fluidization flow rate calculation											
工况	球形度 Ø _s	流体动 力粘度 µ (Pa·s)	压降 d P (Pa)	渗漏口 流速 U ₀ (m/s)	粒径 <i>d</i> p(m)	颗粒 密度 $ ho_{ m s}$ (kg/m ³)	孔隙率 <i>E</i>	纵缝 宽度 <i>L</i> ₀ (m)	淹没 水位 H _w (m)	覆土 深度 <i>H_s</i> (m)	流化角 $oldsymbol{ heta}$ (°)
C1	0.8	0.00101	1990	1.46667	0.001500	2683	0.455	0.005	0.045	0.15	64.5
C2	0.8	0.00101	1100	1.01667	0.001500	2683	0.455	0.005	0.07	0.15	63.9
C3	0.8	0.00101	990	0.73333	0.001500	2683	0.455	0.005	0.15	0.15	62.8
C4	0.8	0.00101	1440	0.31667	0.000750	2688	0.484	0.005	0.15	0.15	62
C5	0.8	0.00101	1020	1.87500	0.003710	2670	0.446	0.005	0.15	0.15	65
C6	0.8	0.00101	910	0.35833	0.001140 (有效粒径)/ 0.001930 (平均粒径)	2677	0.434	0.005	0.15	0.15	63.6
C7	0.8	0.00101	1260	0.70833	0.001636 (有效粒径)/ 0.003120 (平均粒径)	2674	0.422	0.005	0.15	0.15	64.8
C8	0.8	0.00101	410	0.58333	0.000750	2688	0.484	0.002	0.09	0.09	61.5
C9	0.8	0.00101	400	0.65694	0.000750	2688	0.484	0.002	0.12	0.12	62
C10	0.8	0.00101	380	0.79167	0.000750	2688	0.484	0.002	0.15	0.15	62.5
C11	0.8	0.00101	480	0.52130	0.000750	2688	0.484	0.003	0.15	0.15	61.8

注:1.砂土颗粒的球形度通常介于 0.65 至 0.9 之间,孙越等^[13]测得 0.8~1 mm 石英砂的球形度为 0.824,参该试验本文砂土球形度 统一取 0.8; 2.流体动力粘度取值为 20°时水的动力粘度; 3.连续级配粒径由式(3)计算,间断级配砂土粒径由式(6)以 A2 砂土参数 为基准确定; 4.孔隙率经室内土工试验确定; 5.流化角由图像处理软件 ImageJ 对各工况下完全流化阶段图片精确测量得到^[12]; 6. *h*=1.3 cm~3.8 cm 区段压降计算,流体速度取渗漏口流速 *U*₀,渗漏口流量与渗漏口面积之比确定。

对于干砂工况 C1,只有当渗漏口上覆砂土局部被 渗漏流体浸润后,才会发生启动流化现象;基于试验 观测,该工况启动流化时,流体浸润线高度测量为 4.5 cm,因此计算时 *H*w取试验观测值。

图 7 展示了各工况砂土启动流量试验和理论公式 计算结果;其中理论公式除本文推导公式(21)外,尚 对比分析了基于传统 Ergun 方程的计算启动流量(见 式(22))。为进一步论证间断级配砂土粒径取值方法, 两种计算理论均采用两种平均粒径计算方法。

$$Q_{\rm c} = K_{\rm s} \frac{b' + \sqrt{b'^2 + 4a'c'}}{2a'} L_0 W$$
 (22a)

$$a' = \frac{WL_0^2 B}{L_0 + 2H_w \cot \theta} \left(\frac{\ln(2H_w \cot \theta + L_0) - \ln(L_0)}{2 \cot \theta} \right) (22b)$$

$$b' = WL_0 AH_w \tag{22c}$$

$$c' = g(1-\varepsilon)(\rho_{s} - \rho_{w})WH_{w}(L_{0} + H_{w}\cot\theta) +g(1-\varepsilon)\rho_{s}W(H_{s} - H_{w})(L_{0} + H_{w}\cot\theta + H_{s}\cot\theta)$$
(22d)

由图 7 可见,较之于基于传统 Ergun 方程的启动 流化流量计算结果,本文基于修正 Ergun 方程的计算 公式(21)计算结果更符合试验。对于间断级配工况, 采用式(6)计算所得有效粒径代入算式所得结果更为 准确;相较而言,代入由式(3)所得平均粒径将明显高 估启动流化流量。

Fig.7 Comparison between theoretical calculation values and experimental measurement values of start-up fluidization flow rate

3 参数分析

3.1 淹没水位的影响

基于 A2 砂样, 取覆土深度 15 cm、管道渗漏口纵

缝 5 mm、流化角 63.7°(C1~C3 工况试验平均值),变 化管道渗漏口淹没水位 H_w 进行参数分析,结果见图 8。图中可见,当淹没水位位于砂层表面以下时,启动 流化流量随淹没水位的增加呈降低趋势,这主要源于 两方面原因:(1)水位上升后管道上覆砂层有效重量降 低;(2)流体流经砂层的流域面积增大,渗漏流体向上 的渗透力可更有效传递,进而增大渗透力。而当淹没 水位大于覆土深度时,启动流化流量保持恒定;这主 要是因为在此工况下,增大淹没水位并不会引起锥形 砂床有效重量与流体渗透力的变化。

Fig.8 Starting fluidization flow rate at different submerged water

Fig.9 Starting fluidization flow rate of different effective particle sizes

以 C4~C7 工况为试验基准,计算参数取试验平 均值(流化角 63.64°,孔隙率 0.448,颗粒比重 2.6784), 设淹没水位 17 cm、覆土深度 15 cm、管道渗漏口纵缝 5 mm,由此开展启动流化流量关于砂土平均粒径的参 数分析,试验和计算结果见图 9。图中可见,伴随砂 土有效粒径的增大,其启动流化流量呈增大趋势,理 论计算趋势与试验结果高度吻合。这种粒径依赖性可 以通过所用修正 Ergun 方程式(2)的参数变化来解释: 随颗粒有效粒径的增大,式中 A 与 B 均会减小,从而 导致流体向上的渗透力显著降低。因此,为达到渗透 力抵消上覆砂土自重的临界启动流化状态,需要更大 的流量以提高渗透力。此外,结合式(6)可见,有效粒 径增大对渗透力的影响,本质上是因为较大的粒径增 强了砂土颗粒的渗透系数,使其对流体流动的阻碍作 用降低。

3.3 覆土深度的影响

以 C8~C10 工况为试验基准, 流化角取试验平均 值 62°, 其他砂土参数同 A3 砂样, 设淹没水位 17 cm、 管道渗漏口纵缝 2 mm, 由此开展启动流化流量关于 砂土埋置深度的参数分析, 试验和计算结果见图 10。 结果表明, 启动流化流量随着覆土深度的增加而增大, 这主要是因为管道上覆砂土有效重量的增大, 从而需 要提高渗漏流量以增大临界渗透力。然而, 较之于淹 没水位和颗粒有效粒径对启动流化流量的影响, 覆土 深度影响相对不显著。

图 10 不同覆土深度的启动流化流量

3.4 管道渗漏口尺寸的影响

以 C4、C10 和 C11 工况为试验基准,流化角取试 验平均值 62.1°,其他砂土参数同 A3 砂样,设淹没水 位 17 cm、覆土深度 15 cm,由此开展启动流化流量关 于管道渗漏口尺寸的参数分析,试验和计算结果见图 11。从图中可以发现,砂土启动流化流量在不同渗漏 口尺寸下基本保持恒定。然而,值得注意的是,尽管 启动流化流量本身变化不大,但不同渗漏口尺寸下砂 土产生流化空洞的管内水压与管道渗漏流速却存在显 著差异(见图 12)。从工程应用的角度分析,在固定供 水管道内部压力情况下,渗漏口尺寸越大,上覆砂层 越易流化。这一观察结果表明,较之于管内水压和渗 漏流速,渗漏流量作为评估砂土启动流化的参数,具 有更高的适用性和准确性。

图 11 不同渗漏口尺寸的启动流化流量

Fig.12 Starting fluidization flow velocity and internal water pressure of pipes with different leakage port sizes

4 结论

本文综合考虑砂土粒径与级配、管道淹没水位与 覆土深度、渗漏口尺寸等,对供水管道渗漏砂土启动 流化流量进行了理论推导,并进行了试验验证与参数 分析。主要结论如下:

(1) 基于试验测量压降提出了经验修正 Ergun 方程,较之于传统 Ergun 方程,其更适用于供水管道渗漏砂土流化过程中流体压降的描述。

(2) 试验验证了本文启动流化流量理论计算公式;基于间断级配砂土有效粒径计算,本文理论方法同时适用于连续与间断级配砂土工况,并引入了管道淹没水位这一关键变量。

(3) 当管道淹没水位低于覆土深度时,砂土启动

流化流量随水位增加而降低;当水位高于砂层表面后, 其不再有影响。此外,启动流化流量随颗粒有效粒径 和覆土深度增大而增加,而其对管道渗漏口尺寸的变 化并不显著。

本文提出的供水管道渗漏诱发砂土启动流化流量 理论公式与修正Ergun方程,仅适用于二维平面计算模 型,尚待进一步扩展至三维流化问题。

参考文献:

[1] 张斌. 基于透明土的漏损管道水土相互作用机理研究[D]. 杭州:浙江大学, 2021.

[2] Shi Y F, Yu Y S, Fan L T. Incipient fluidization condition for a tapered fluidized bed[J]. Industrial & engineering chemistry fundamentals, 1984, 23(4): 484-489.

[3] Alsaydalani M O A. Internal fluidisation of granular material[D]. Southampton City: University of Southampton, 2010.
[4] Cui X L, Tao G Y, Li J. Experiment and numerical simulation on seepage failure of sand caused by leakage of underground water pipe[C]. //In IOP Conference Series: Earth and Environmental Science, 2018, 153(3): 032033.

[5] Nguyen N H T, Nguyen T T. Numerical investigation of the instability of dry granular bed induced by water leakage[J]. Acta Geotechnica, 2024.

[6] Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94.

[7] 张瑞瑾, 谢鉴衡, 王明甫, 等. 河流泥沙动力学[M]. 北京: 中国水利水电出版社, 1989.

[8] Urumović K, Urumović Sr K. The referential grain size and effective porosity in the Kozeny-Carman model[J]. Hydrology and Earth System Sciences, 2016, 20(5): 1669-1680.

[9] 刘松玉. 土力学[M]. 北京: 中国建筑工业出版社, 2020.
[10] Weisman R N, Lennon G P, Roberts E W. Experiment on fluidization in unbounded domains[J]. Journal of Hydraulic Engineering, 1988, 114(5): 502-515.

[11] Thaha M A, Triatmadja R, Yuwono N, et al. Minimum jet velocity for unbounded domain fluidization as a new dredging methods[J]. Engineering Journal, 2018, 22(5): 1-11.

[12] 彭程. 供水管道渗漏诱发砂土流化试验与理论研究[D]. 广州: 中山大学, 2024.

[13] 孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(06): 1061-1068.