DOI: 10.11779/CJGE

岩土工程协同式风险评估方法

肖 特 1,2,3, 李典庆*1,2, 周创兵 4

(1. 武汉大学水资源工程与调度全国重点实验室,武汉 430072; 2. 武汉大学水利水电学院工程风险与防灾研究所,武汉 430072;
 3. 上海交通大学船舶海洋与建筑工程学院,上海 200240; 4. 南昌大学工程建设学院,南昌 330031)

摘 要:空间变异性是岩土材料的固有属性,给岩土工程可靠性分析和风险评估带来了巨大挑战。本文在随机有限元 法的框架下,提出了一种结合多模型效率和精度优势的协同式风险评估方法,通过随机模拟样本空间建立简单模型和 复杂模型的内在联系,不仅能灵活地处理复杂的岩土体空间变异性,同时能实现既高效又准确的风险评估。通过基坑、 浅基础、边坡等 3 个典型岩土工程算例验证了协同式风险评估方法的有效性,其计算效率较传统随机模拟方法提高了 数个量级,为复杂工程定量风险评估提供切实可行的工具。岩土体三维空间变异性会显著影响岩土工程的失效模式、 可靠性和风险,协同式风险评估方法能够合理考虑这些影响,极大促进随机有限元法在实际工程中的应用。多模型协 同策略可以推广应用于贝叶斯更新、最优化等诸多目标明确的随机问题。 关键词:岩土工程;空间变异性;可靠性分析;风险评估;多模型协同 中图分类号:TU43 文献标识码:A 文章编号: 作者简介:肖特(1991一),男,博士,副教授,主要从事岩土工程安全及灾害风险防控方面的研究工作。E-mail: xiaote@sjtu.edu.cn。

Collaborative risk assessment approach in geotechnical engineering

XIAO Te^{1, 2, 3}, LI Dian-qing^{*1, 2}, ZHOU Chuang-bing⁴

(1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; 2. Institute of Engineering Risk and Disaster Prevention, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China; 3. School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 4. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China)

Abstract: Spatial variability is an inherent property of geo-materials, posing significant challenges to geotechnical reliability analysis and risk assessment. Within the framework of random finite element method, this study proposes a collaborative risk assessment approach that combines the advantages of multiple models in terms of efficiency and accuracy. By establishing an inherent connection between simple and complex models through the sample space of stochastic simulation, the proposed approach not only flexibly handles the complex spatial variability of geo-materials but also achieves both efficient and accurate risk assessment. The effectiveness of the proposed approach is demonstrated through three typical geotechnical examples of excavation, shallow foundation, and slope. Its computational efficiency is improved by several orders of magnitude compared to conventional random simulation methods, providing a practical tool for quantitative risk assessment in complex engineering projects. The three-dimensional spatial variability significantly affects the failure modes, reliability, and risk of geotechnical structures. The collaborative risk assessment approach can appropriately consider these effects and greatly facilitate the application of random finite element method in practice. The multi-model collaboration strategy can be extended to various stochastic problems with well-defined objectives, such as Bayesian updating and optimization.

Key words: Geotechnical engineering; spatial variability; reliability analysis; risk assessment; multi-model collaboration

0 引 言

土木工程中充满着各种不确定性,需要在工程设 计里合理考虑以提供充足的安全保障。不同于其他土 木工程所涉及的人工材料,岩土工程面对的天然岩土 材料具有变异性高、空间变异显著等特征[1-3],极大影 响岩土工程的风险水平。新版欧洲岩土工程设计规范 Eurocode 7^[4]明确指出需要考虑岩土体空间变异性。在 其作用下,岩土工程可靠性和风险呈现高维不确定性、

基金项目:国家自然科学基金项目(U2240211) 收稿日期: 2024-06-*通信作者(Email: dianqing@whu.edu.cn) 多失效模式、低失效概率等特征^[5],给传统可靠性分析和风险评估方法带来了巨大挑战。随机有限元法^[6-9]为解决该问题提供了一种可行的工具,其结合随机场理论描述空间变异性、有限元法(本文泛指各种基于网格或颗粒的数值分析方法,包括有限差分法^[10]、离散元法^[11]、物质点法^[12]等)分析岩土结构响应、随机模拟方法传递不确定性并评估可靠性和风险水平。以蒙特卡洛模拟为代表的随机模拟方法能很好地处理高维不确定性和多失效模式。但其计算的低效性在小概率问题中尤为突出,特别是需要数万次三维有限元分析的情况。这极大限制了随机有限元法在实际岩土工程中的应用。

在确定性有限元分析中,有种普遍采用的策略: 即在采用目标模型(复杂模型,准确但低效)分析之 前,先采用简化模型(简单模型,近似但高效)进行 初步分析,如二维模型之于三维模型、稀疏网格之于 精细网格,以确定模型参数和近似响应,最后再采用 目标模型得到准确的响应。这样的两步策略可以避免 反复调试复杂模型从而提高效率。如果直接将该策略 推广到可靠性分析和风险评估中, 前后两步评估相对 独立,基于简单模型的评估并不能有效提升基于复杂 模型的评估的效率。在设计优化领域,空间映射法[13] 旨在通过代理模型建立简单模型和复杂模型的映射关 系,从而在仅采用简单模型的情况下推测复杂模型的 结果。针对图像,气象领域的降尺度法[14]和计算机视 觉领域的超分辨率法[15]具有类似的目的。然而,两个 模型映射关系的复杂程度因问题和模型而异,在考虑 岩土体空间变异性的复杂条件下的可行性有待研究。

在可靠性分析和风险评估的背景下,本文旨在提 出一种通用的多模型协同策略,称之为协同式风险评 估方法。通过随机模拟样本空间建立简单模型和复杂 模型的内在联系,不仅能灵活地处理复杂的岩土体空 间变异性,同时能实现既高效又准确的风险评估。通 过3个典型岩土工程算例验证所提方法的有效性,为 复杂工程定量风险评估提供切实可行的工具。

1 协同式风险评估方法

1.1 基本框架

在随机模拟的框架下,定量风险评估需要产生一系列随机样本(考虑岩土体空间变异性时即为不同的随机场实现),然后采用一个确定性模型(复杂模型或简单模型)分析各样本对应的系统响应 G 及失效后果 C,最终得到失效概率 P_f和风险 R^[7]。由于复杂模型 计算耗时,如何利用简单模型以减少复杂模型分析所 需的样本量是提高计算效率的关键。

考虑到简单模型和复杂模型一般具备相同或相近的边界条件、材料参数、力学机理等,只要模型简化得当,二者必然存在较高的关联性。虽然简单模型所计算的样本响应的绝对值不一定准确,但能在一定程度上反应两个样本响应的相对大小,该信息能为复杂模型省去重新遍历样本空间的大量工作。基于该思想,协同式风险评估方法的基本框架如图1所示,主要分为两步:(1)基于简单模型和子集模拟¹¹⁶¹的初步分析; (2)基于复杂模型和响应调节法¹¹⁷¹的精细分析;二者通过样本空间进行连接。后文将用下标 *p*和*t*分别表示初步分析和精细分析中所涉及的变量。

图 1 协同式风险评估分析框架

Fig. 1 Framework of collaborative risk assessment approach

1.2 初步分析

子集模拟^[16]通过乘法定理将一个小概率事件 F = {G < 0}的发生概率表达为一系列中间失效事件的条件概率的乘积,并通过马尔科夫链蒙特卡洛模拟产生

中间事件的条件失效样本,以快速逼近目标失效事件。 对于条件概率为 p₀ (一般取 p₀ = 0.1)、子集层数 为 m、每层样本数为 N 的子集模拟 (m = 1 时退化为 传统蒙特卡洛模拟),样本空间根据简单模型响应量 G_p 的大小被划分为m+1个互斥且穷尽的子集 Ω_k (k = 0, 1,...,m)。根据子集模拟的计算流程^[7],每个子集对应 不同的概率 $P(\Omega_k)$ 和不同的样本数 N_k : 当k = 0, 1, ...,m-1时, $P(\Omega_k) = (p_0)^k (1-p_0), N_k = N(1-p_0)$; 当k = m时, $P(\Omega_k) = (p_0)^k, N_k = Np_0$ 。因此总样本量为 $mN(1-p_0)+Np_0$ 。根据全概率公式,基于简单模型的初 步失效概率表达为:

$$P_{f,p} = \sum_{k=0}^{m} P\left(F_{p} \middle| \Omega_{k}\right) P\left(\Omega_{k}\right)$$
$$= \sum_{k=0}^{m} \left(\sum_{j=1}^{N_{k}} \frac{I_{p,kj}}{N_{k}}\right) P\left(\Omega_{k}\right) \quad . \tag{1}$$
$$= \sum_{k=0}^{m} \sum_{j=1}^{N_{k}} I_{p,kj} W_{p,k}$$

式中, $P(F_p|\Omega_k)$ 为每个子集的条件失效概率; $I_{p,kj}$ 为 Ω_k 中第 j 个样本的简单模型响应量 $G_{p,kj}$ 的指示函数,当 $G_{p,kj} < 0$ 时,样本失效, $I_{p,kj} = 1$,否则 $I_{p,kj} = 0$; $w_{p,k} =$ $P(\Omega_k)/N_k$ 为每个样本在初步分析中的权重。由于子集 模拟中不同样本具有不同的权重,其失效概率本质上 是各样本指示函数的加权累加。

在定量风险评估中,失效风险通常定义为失效概 率和平均失效后果的乘积。针对子集模拟,失效风险 可以类似地表达为各样本失效后果的加权累加:

$$R_{p} = P_{f,p} \overline{C}_{p} = \sum_{k=0}^{m} \sum_{j=1}^{N_{k}} C_{p,kj} w_{p,k}$$

式中, $C_{p,kj}$ 为 Ω_k 中第j个样本通过简单模型计算的失效后果,若失效未发生,则 $C_{p,kj} = 0$ 。

虽然基于简单模型获得的 *P_f*, 和 *R_p* 只是近似解, 但简单模型的高效性保障了初步分析只需很少的计算 成本便可完成。更重要的是,子集模拟提供了一种高 效逼近失效域的样本空间划分方式,其中的随机样本 包含了一定的系统响应信息。这些信息将通过响应调 节法合理地利用到基于复杂模型的精细分析中,得到 校正的目标失效概率 *P_f*, 和目标风险 *R_t*。

1.3 精细分析

实际上,因为邻近空间中的样本一般具有相近的 系统响应,没必要对初步分析中的所有样本都采用复 杂模型重新分析。响应调节法的子分区策略^[17]便是一 种选择少量代表性样本的合理手段。如图1所示,根 据初步分析中 G_p 的大小,可以进一步将每个子集 Ω_k 等分为 N_s 个具有相同样本数的子分区 Ω_{kj} ($j = 1, 2, \cdots$, N_s ; $N_s << N$)。在每个子分区的 N_k/N_s 个样本中,随机 选取一个代表性样本采用复杂模型重新分析,以其失 效与否作为代表,来判断整个子分区是否失效。基于 所选的(m+1) N_s 个代表性样本,精细分析的 $P_{f,t}$ 和 R_t 分别表达为:

$$P_{f,t} = \sum_{k=0}^{m} \sum_{j=1}^{N_s} P\left(F_t | \Omega_{kj}\right) P\left(\Omega_{kj}\right) , \qquad (3)$$

$$= \sum_{k=0}^{m} \sum_{j=1}^{m} I_{i,kj} W_{i,k}$$

$$R_{t} = \sum_{k=0}^{m} \sum_{j=1}^{N_{s}} C_{i,kj} W_{i,k} \quad \circ \quad (4)$$

式中, $P(F_t|\Omega_{kj})$ 为每个子分区的条件失效概率; $I_{t,kj}$ 和 $C_{t,kj}$ 分别为 Ω_{kj} 中代表性样本的复杂模型响应量 $G_{t,kj}$ 的指示函数和失效后果,当 $G_{t,kj} < 0$ 时, $I_{t,kj} = 1$,否则 $I_{t,kj} = 0$; $w_{t,k} = P(\Omega_{kj}) = P(\Omega_k)/N_s$ 为代表性样本的权重。 响应调节法的渐进无偏性^[17]确保了 $P_{f,t}$ 和 R_t 的准确性。

无论是初步分析还是精细分析、失效概率还是风险,式(1)-(4)具有一致的加权累加表达形式。得益于 初步分析在简单模型的基础上预先对样本空间进行了 划分,精细分析Q需要(m+1) N_s 次复杂模型分析,远 少于基于复杂模型直接采用子集模拟或蒙特卡洛模拟 所需的计算量。总之,协同式风险评估方法共需要 $mN(1-p_0)+Np_0$ 次简单模型分析和(m+1) N_s 次复杂模型 分析,总计算量 N_T 按复杂模型次数计表示为 $N_T =$ (m+1) N_s + ξ [$mN(1-p_0)+Np_0$]+ N_r ,其中 ξ 为简单模型与复 杂模型的计算耗时比,一般 $\xi <<1$; N_r 为构建简单模 型所需的复杂模型计算量,除响应面外的大部分情况 下,简单模型可以凭借工程经验构建, $N_r = 0$ 。

与其他随机模拟方法类似,基于精细分析所选的 代表性样本同样可以估计某个关心变量 *Y*(包括但不 限于系统响应量 *G*)的统计特征。其中,均值 E(*Y*)和 方差 Var(*Y*)按样本权重加权表达为:

$$\mathbf{E}(Y) = \sum Y_i w_i' \quad , \tag{5}$$

$$\operatorname{Var}(Y) = \sum Y_i^2 w_i' - \left[\operatorname{E}(Y) \right]^2 \quad . \tag{6}$$

式中, $w'_i = w_i / \Sigma w_i$ 为调整后的样本权重。

综上所述,协同式风险评估方法通过样本空间直 接联系简单模型和复杂模型,既能避免建立二者间的 复杂映射关系,又能充分利用二者优势,实现兼顾精 度和效率的可靠性分析和风险评估。

2 岩土工程算例分析

2.1 算例简述

本节将采用3个空间变异性作用下的典型岩土工 程算例验证协同式风险评估方法的有效性,包括基坑 开挖变形、浅基础沉降和边坡稳定,以展示3种最常 用的简单模型和复杂模型的协同组合。具体问题描述 分别见附录A-C,所有空间变异参数均用对数正态随 机场和平方指数型相关结构予以表征。

(1) 基坑算例:开挖宽 40 m、深 10 m 的基坑,采 用悬式围护结构支护,墙体宽 1 m、高 20 m。土体弹 性模量的竖向自相关距离为1m。以基坑开挖完成后的最大地表沉降U,超过0.06m作为支护失效判据。

(2) 浅基础算例:条形基础长 10 m、宽 2 m、埋 深 0.5 m,受大小为 500 kPa 的竖向均布荷载作用。土 体弹性模量的水平和竖向自相关距离分别为 10 m 和 1 m。以中心沉降 U,超过 0.04 m 作为基础失效判据。

(3) 边坡算例: 土质边坡长 100 m、高 6 m、坡角 26.6°。土体不排水抗剪强度的水平和竖向自相关距离 分别为 20 m 和 2 m。以安全系数 F_s小于 1 作为边坡 失稳判据、滑块体积作为简化的边坡失效后果。

对基坑和浅基础算例仅进行可靠性分析,对边坡 算例开展风险评估。其中,(1)基坑算例以有限元为 复杂模型、响应面为简单模型,响应面形式取最简单 的一次多项式,基于100个随机样本点建立,两个模 型分别耗时13秒和0秒,ζ=0,N_r=100;(2)浅基 础算例以三维有限元为复杂模型、二维有限元为简单 模型,二维模型取自三维模型的中心剖面,分别耗时 24分钟和12秒,ζ=1/120;(3)边坡算例以精细网格 有限元为复杂模型、粗糙网格有限元为简单模型,网 格尺寸分别为1m×1m×1m和2m×2m×5m,分别耗 时40分钟和48秒,ζ=1/50。除安全系数F_s和滑块 体积V外,同时记录滑块长度L、宽度W、深度D, 以更准确地量化滑面形态。

由于协同式风险评估方法利用样本空间建立简单 模型和复杂模型的联系,其初步分析和精细分析必须 采用一致的不确定性建模方式以保障样本空间的一致 性。对于三维和二维的协同,建议首先生成三维随机 场,然后输出特定剖面用于二维分析,部分随机变量 并不参与二维分析;而对于精细网格和粗糙网格的协同,建议采用两套独立的随机场网格和有限元网格, 先在相同的随机场网格处生成随机场,再通过空间插 值映射到不同的有限元网格处,最优线性估计法^[18-19] 非常适合这种情况下的随机场模拟。

2.2 结果验证

统一起见,3 个算例的功能函数分别取 $G = 1-U_v/0.06$, $G = 1-U_v/0.04$, $G = F_s-1$, 以G < 0表示 失效。协同式风险评估方法的参数设置如表 1 所示, 采用直接基于复杂模型的子集模拟作为对比验证。

采用协同式方法和子集模拟所估计的3个算例的 功能函数累积分布函数如图2所示。可以看出,无论 基于简单模型的初步分析是否高估或低估目标可靠性 水平,在基于复杂模型的精细分析修正后,总能和子 集模拟保持很好的一致性,即使在小概率水平(如 10⁻³-10⁴)也有非常理想的表现。

Fig. 2 Cumulative distribution functions of the three examples

Table i Comparison among uniferent renaointy methods										
算例		基坑			浅基础			边坡		
方法		协同式		子集模拟	协同式		子集模拟	协同式		子集模拟
		初步入	精细	• >10000	初步	精细	• >1• >1• >1•	初步	精细	
确定性模型		响应面	有限元	有限元	二维	三维	三维	粗糙网格	精细网格	精细网格
方法参数	т	2	-	2	4	-	4	4	-	3
	N	5000	-	500	500	-	500	500	-	500
	Ns		10	_	_	10	-	_	10	-
失效概率	均值	3.43×10 ⁻²	4.24×10^{-2}	4.30×10^{-2}	3.53×10-3	2.22×10^{-4}	2.02×10^{-4}	8.64×10^{-4}	2.89×10-3	2.80×10-3
	变异系数	0.054	0.211	0.179	0.273	0.505	0.450	0.346	0.334	0.348
等价计算量		100	30	950	15.4	50	1850	37	50	1400

表1 不同可靠性分析方法对比 Table 1 Comparison among different reliability methods

为了估计失效概率的变异性,重复进行了 20 次独 立的协同式分析和子集模拟,结果如表 1 所示。对于 这 3 个算例和所采用的简单模型,协同式分析和子集 模拟在失效概率的均值和变异性方面基本一致,但前 者仅需要后者 1/7、1/28、1/16 的计算量。若与传统蒙 特卡洛模拟相比,在相同变异性的前提下,协同式方 法可以提高计算效率 4 倍、270 倍、36 倍。注意到 3 个算例的失效概率分别处在 10⁻²、10⁻⁴、10⁻³量级,失 效概率越低,协同式方法计算效率提高得越显著。此 外,以边坡算例为例,协同式方法、子集模拟、蒙特 卡洛模拟的失效样本比例分别为 22/50、140/1400、 2.8×10⁻³。协同式方法的失效样本产生效率远远高于其 他方法,非常适合于需要大量失效样本的失效分析和 风险评估。

基于协同式方法估计的边坡算例风险也与子集模 拟和蒙特卡洛模拟的结果一致,失效概率和风险分别 从初步分析的 8.84×10⁴ 和 1.77 m³ 修正到精细分析的 2.80×10⁻³ 和 7.01 m³。在协同式分析中,选取的 50 个 代表性样本同时采用简单模型和复杂模型进行了有限 元分析。为了方便比较,各响应均用相应的复杂模型 确定性分析结果进行归一化。如图 3 所示,尽管线性 拟合线(实线)与 1:1 线(虚线)并不重合,这些有 限元响应在简单模型和复杂模型中都有超过 0.8 的高 相关性,其中安全系数的相关系数更是高达 0.99。这 说明所选择的简单模型能很好地反映复杂模型的主要 特征。粗糙网格模型总体上会高估安全系数而低估滑 块规模,从而导致边坡失效概率和风险的低估。这种 差异随着响应的增大而增大。

类似地,在基坑和浅基础算例中,简单模型和复 杂模型的相关性也同样高达 0.99。高相关性保障了初 步分析能提供足够多有用的样本空间划分信息(即各 样本空间响应的相对大小排序准确),从而使得精细分 析仅需很少量的复杂模型计算便可保证较精确的可靠 性和风险估计。从上述 3 个算例可以看出,岩土工程 中很容易构建一个与复杂模型具有强相关性的简单模 型,至少粗糙网格模型是一个通用的有限元简化方案。

图 3 边坡算例简单模型和复杂模型响应对比

Fig. 3 Comparison of responses using simple model and complex model in the slope example

2.3 空间变异性的影响

本节以边坡算例为例,进一步说明岩土体三维空间变异性对岩土工程安全的重要影响。大多数现有研究只考虑一维或二维空间变异性,认为竖向空间变异性对边坡可靠性影响显著,而水平空间变异性的影响相对有限^[20]。以水平和竖向自相关距离 $l_h = 20 \text{ m} \, \pi \, l_v$ = 2 m 为基准,再考虑 $l_h = [10, 40, 80, 120] \text{ m} \, \pi \, l_v = [1, 4, 8, 12] \text{ m} 与其的组合。以协同式风险评估方法中的精细分析作为最终结果,其中<math>l_h \pi \, l_v \, \mathcal{O}$ 别用坡长100 m 和坡总高10 m 进行归一化。

图 4(a)展示了边坡失效概率和风险随自相关距离的变化。当归一化自相关距离从 0.1 增加到 1.2 (即空间变异性变弱),失效概率和风险显著增加了数个量

级。该影响随着 *l*_h超过一半坡长或 *l*_e超过坡高而减弱。 由于 *l*_h一般在 20-40 m 左右^[2],因此水平空间变异性 会对长边坡有显著影响,例如数公里长的堤坝。此外, 竖向空间变异性比水平空间变异性对边坡失效概率和 风险的影响更大。

对于安全系数,基于式(5)和(6)在整个样本空间进 行统计,结果如图 4(b)所示。安全系数的均值几乎不 受空间变异性影响,其变异性随自相关距离的增加而 增加,从而导致失效概率的增加。对于滑块特征,基 于式(5)仅对真正形成滑块的失效样本进行统计,图 4(c)和(d)分别给出了滑块体积、长度、宽度、深度随 自相关距离的变化。其中,滑块体积和长度随 *l*,的增 加而增加、随 *l*,的增加而略微减小,滑块宽度和深度 则基本不变。这表明水平和竖向空间变异性对边坡失 效有着不同的作用机理。水平空间变异性对失效模式 的影响远大于竖向空间变异性,主要通过影响滑块长 度和位置进而影响失效模式。

对比三维和二维边坡风险评估¹⁷, 竖向空间变异 性对边坡失效概率、后果和风险的影响规律基本一致, 说明二维分析能很好地考虑竖向空间变异性的影响。 二维风险评估常以滑块面积表示失效后果, 而滑块面 积(即滑块宽度和深度)基本不随自相关距离变化, 说明横向空间变异性对边坡失效后果的影响确实较 小, 水平空间变异性对边坡失效后果的影响确实较 小, 水平空间变异性主要通过纵向空间变异性从滑块 长度的角度来影响边坡的失效模式和后果。因此, 只 考虑横向空间变异性的二维分析并不能合理地考虑水 平空间变异性的影响。这也是在边坡算例中选择三维 粗糙网格模型(而不是二维模型)作为简化模型的主 要原因。

此外,边坡的滑面形态会随着空间变异性变化而 改变,尤其是水平空间变异性。图 4(e)和(f)展示了两 次典型随机场实现的滑面。当水平空间变异性较强时 (即 h 较小),滑面近似球形;当其较弱时(即 h 较 大),滑面则近似圆柱形。因此,在考虑岩土体空间变 异性的情况下,难以事先确定合理的三维边坡滑面形 态,导致三维极限平衡法等方法可能无法定位最危险 滑面从而高估安全系数;而三维有限元法则无需对滑 面的形状和位置做任何假定,非常适合随机分析。

综上所述,水平空间变异性(特别是纵向空间变 异性)会显著影响三维边坡的失效模式、可靠性和风 险,尤其是对数公里长的堤坝这类长边坡而言。相比 之下,竖向空间变异性对三维边坡的可靠性和风险影 响更为显著,但对其失效模式的影响较小。这些影响 都可以通过协同式风险评估方法合理地考虑进三维边 坡可靠性分析和风险评估中。

形滑面; (f) 柱形滑面

Figure 4 Effects of 3-D spatial variability on the slope example: (a) failure probability and risk; (b) safety factor; (c) sliding mass volume and length; (d) sliding mass width and depth; (e) spherical slip surface; (f) cylindrical slip surface

Figure 5 Adaptive strategy for collaborative approach: (a) increase in model correlation; (b) variability reduction of failure probability

3 方法扩展 🦯

简单模型和复杂模型的高相关性对保障协同式风 险评估方法的高效性至关重要。在某些情况下,如果 直接构建一个较好的简单模型存在困难,建议采用自 适应策略^[21]逐步构建一个合适的简单模型。以响应面 作为简单模型为例,在经过一次协同式分析后,除了 初始用于训练的样本外,一系列代表性样本也经过了 复杂模型的分析,它们可以共同作为新的训练样本用 于更新响应面。比起初始样本,这些代表性样本更趋 向于沿真实失效空间分布,因此新响应面能更好地表 征失效空间附近的系统响应。以新响应面作为简单模 型重复协同式分析,直至结果收敛。结合自适应策略, 协同式方法类似于代理模型中的主动学习方法^[22],最 终将得到一个与复杂模型高度相关的简单模型。

图 5 展示了一个自适应协同式分析的例子^[21]。初始的简单模型明显偏离了 1:1 线,尤其是在失效域部分,其估计的初步失效概率也明显有偏。经过两次迭代后,简单模型与复杂模型的相关性从 0.968 提高到了 0.983,并修正到沿 1:1 线分布,其失效概率估计也修正为无偏,且变异性迅速下降,最终不到子集模拟的 1/4。在自适应过程中,复杂模型的计算量仅呈线性增加,在总计算量仍小于子集模拟的情况下可以得到更稳定的可靠性估计。

另一方面,协同式风险评估方法的计算量主要受参数 N_s控制,实际运用中同样可以采用自适应方法选择合适的 N_s值^[23]。具体而言,在初步分析完成后,建议先取较小的 N_s(如 N_s = 2)进行精细分析,然后逐

systems, uncertainty, and risk[J]. Journal of Geotechnical and

步增大 N_s进行新一轮精细分析,直到目标失效概率和 目标风险收敛。N_s的变化将重新划分样本空间的子分 区,若新子分区中包含前一步的代表性样本,则直接 选其作为新的代表性样本,以省去复杂模型的重复计 算。

除了可靠性分析和风险评估以外,协同式风险评 估方法中的多模型协同策略可以推广到诸多目标明确 的随机问题,如贝叶斯更新^[24]、最优化^[25]等,具有非 常广阔的应用前景。这些问题中存在一个需要被最小 化(或最大化)的目标函数,类似于可靠性分析中逐 渐向失效域逼近的功能函数。类似地,可以采用协同 式方法,以目标函数为驱动划分样本空间,先基于简 单模型进行初步分析,再利用复杂模型进行修正,通 过样本空间权重调整代替两个模型间的复杂映射关 系,实现既高效又准确的随机分析。

4 结论

本文提出了一种结合多模型效率和精度优势的协同式风险评估方法,通过随机模拟样本空间建立简单模型和复杂模型的内在联系,克服了空间变异性带来的高维不确定性、多失效模式、低失效概率挑战,实现既高效又准确的风险评估。

(1) 通过基坑、浅基础、边坡等 3 个典型岩土工 程算例,展示了最常用的响应面加有限元、二维加乏 维、粗糙网格加精细网格的简单模型和复杂模型协同 组合,验证了协同式风险评估方法的有效性,其计算 效率较传统随机模拟方法提高了数个量级,为复杂工 程定量风险评估提供切实可行的工具。

(2) 岩土体三维空间变异性会显著影响岩土工程 的失效模式、可靠性和风险。以边坡为例, 竖向空间 变异性控制边坡可靠性和风险水平, 水平空间变异性 则主导边坡的失效模式和位置。随机有限元法可以合 理地考虑空间变异性的影响, 协同式风险评估方法能 够极大促进其在实际工程中的应用。

参考文献:

- 陈祖煜. 建立在相对安全率准则基础上的岩土工程可靠度 分析与安全判据[J]. 岩石力学与工程学报, 2018, 37(3): 521-544. (CHEN Zu-yu. Reliability analysis and safety criterion in geotechnical engineering based on the index of safety margin[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 521-544. (in Chinese))
- [2] PHOON K K, CAO Z J, JI J, et al. Geotechnical uncertainty, modeling, and decision making[J]. Soils and Foundations, 2022, 62(5): 101189.
- [3] BAECHER G B. 2021 Terzaghi lecture: Geotechnical

[4] CEN/TC 250. EN 1997-1:2024. Eurocode 7: Geotechnical Design. Part 1: General Rules[S]. European Committee for Standardization (CEN), 2024.

Geoenvironmental Engineering, 2023, **149**(3): 03023001.

- [5] 肖特. 边坡岩土体空间变异性表征及协同式风险评估方法
 [D]. 博士学位论文. 武汉: 武汉大学, 2018. (XIAO Te. Geotechnical spatial variability characterization and collaborative risk assessment of slopes[D]. PhD Thesis. Wuhan: Wuhan University, 2018. (in Chinese))
- [6] FENTON G A, GRIFFITHS D V. Risk Assessment in Geotechnical Engineering[M]. New York: John Wiley & Sons, 2008.
- [7] 李典庆,肖特,曹子君,等. 基于高效随机有限元法的边 坡风险评估[J]. 岩土力学, 2016, 37(7): 1994-2003. (LI Dian-qing, XIAO Te, CAO Zi-jun, et al. Slope risk assessment using efficient random finite element method[J]. Rock and Soil Mechanics, 2016, 37(7): 1994-2003. (in Chinese))
- [8] 朱彬, 裴华富,杨庆,等. 基于随机有限元法的波致海床 响应概率分析[J]. 岩土力学, 2023, 44(5): 1545-1556. (ZHU Bin, PEI Hua-fu, YANG Qing et al. Probabilistic analysis of wave-induced seabed response based on stochastic finite element method[J]. Rock and Soil Mechanics, 2023, 44(5): 1545-1556. (in Chinese))
- [9] 庞锐, 卢韵竹, 季睿, 等. 基于随机动力分析的高土石坝 极限抗震能力研究[J]. 岩土工程学报, 2024, 46(10): 2237-2244. (PANG Rui, LU Yun-zhu, JI Rui, et al. Study on ultimate seismic capability of high earth-rock dam based on stochastic dynamic analysis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2237-2244. (in Chinese))
- [10] 张晋彰,黄宏伟,张东明,等.考虑参数空间变异性的隧 道结构变形分析简化方法[J]. 岩土工程学报, 2022, 44(1): 134-143. (ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, et al. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. (in Chinese))
- [11] 仉文岗, 王琦, 刘汉龙, 等. 岩体空间变异性对隧道拱顶 失效概率的影响[J]. 岩土力学, 2021, 42(5): 1462-1472.
 (ZHANG Wen-gang, WANG Qi, LIU Han-long, et al. Influence of rock mass spatial variability on probability of tunnel roof wedge failure[J]. Rock and Soil Mechanics, 2021, 42(5): 1462-1472. (in Chinese))

[12] 刘鑫, 王宇, 李典庆. 考虑土体参数空间变异性的边坡大

变形破坏模式研究[J]. 工程地质学报, 2019, **27**(5): 1078-1084. (LIU Xin, WANG Yu, LI Dian-qing. Slope failure modes at large deformation in spatially variable soils[J]. Journal of Engineering Geology, 2019, **27**(5): 1078-1084. (in Chinese))

- [13]KOZIEL S, CHENG Q S, BANDLER J W. Space mapping[J]. IEEE Microwave Magazine, 2008, 9(6): 105-122.
- [14] FOWLER H J, BLENKINSOP S, TEBALDI C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling[J]. International Journal of Climatology, 2007, 27: 1547-1578.
- [15] HE J, ZHANG L, XIAO T, et al. Deep learning enables super-resolution hydrodynamic flooding process modeling under spatiotemporally varying rainstorms[J]. Water Research, 2023, 239: 120057.
- [16] AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
- [17] AU S K. Augmenting approximate solutions for consistent reliability analysis[J]. Probabilistic Engineering Mechanics, 2007, 22(1): 77-87.
- [18] ZHANG J, XIAO T, JI J, et al. Geotechnical Reliability Analysis: Theories, Methods and Algorithms[M]. Singapore, Springer, 2023.
- [19] XIAO T, LI D Q, CAO Z J, et al. Three-dimensional slope reliability and risk assessment using auxiliary random finite element method[J]. Computers and Geotechnics, 2016, 79: 146-158.
- [20] JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014096.
- [21] ZHOU Z, LI D Q, XIAO T, et al. Response surface guided adaptive slope reliability analysis in spatially varying soils[J]. Computers and Geotechnics, 2021, 132: 103966.
- [22] 张天龙,曾鹏,李天斌,等.基于主动学习径向基函数的 边坡系统可靠度分析[J].岩土力学,2020,41(9):3098-3108.
 (ZHANG Tian-long, ZENG Peng, LI Tian-bin, et al. System reliability analyses of slopes based on active-learning radial basis function[J]. Rock and Soil Mechanics, 2020, 41(9): 3098-3108. (in Chinese))
- [23] 李典庆,肖特,曹子君,等.基于极限平衡法和有限元法的边坡协同式可靠度分析[J]. 岩土工程学报, 2016, 38(6): 1004-1013. (LI Dian-qing, XIAO Te, CAO Zi-jun, et al. Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of

Geotechnical Engineering, 2016, **38**(6): 1004-1013. (in Chinese))

- [24] TIAN H, LI D Q, CAO Z J, et al. Auxiliary Bayesian updating of embankment settlement based on finite element model and response surface method[J]. Engineering Geology, 2023, 323: 107244.
- [25] DUBOURG V, SUDRET B, BOURINET J M. Reliability-based design optimization using kriging surrogates and subset simulation[J]. Structural and Multidisciplinary Optimization, 2011, 44: 673-690.
- [26] 费康, 彭劼. ABAQUS 岩土工程实例详解[M]. 北京: 人民 邮电出版社, 2017. (FEI Kang, PENG Jie. ABAQUS in Geotechnical Engineering with Practical Examples[M]. Beijing: Posts and Telecom Press, 2017. (in Chinese))
- [27] AHMED A, SOUBRA A H. Probabilistic analysis of strip footings resting on a spatially random soil using subset simulation approach[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2012, 6(3): 188-201.

该基坑算例改自文献^[26],开挖宽 40 m、深 10 m 的基坑,采用悬式围护结构支护,墙体宽 1 m、高 20 m。土体弹性模量为不确定性参数,服从均值为 66 MPa、变异系数为 0.15 的对数正态分布,采用自相关 距离为 1 m 的平方指数型相关结构来描述其竖向空间 变异性。其他为确定性参数,土体泊松比 0.2、重度 20 kN/m³、有效内摩擦角 30°、水平土压力系数 K₀ = 2, 墙体弹性模量 28 GPa、泊松比 0.15、重度 20 kN/m³, 墙体与土体间的摩擦系数为 0.577。以基坑开挖完成后 的最大地表沉降超过 0.06 m 作为支护失效判据。

目标有限元模型如图 6(a)所示,采用对称建模, 研究区域取 100 m×100 m,墙后土体按竖向 0.5 m 划 分网格,远离墙体的区域网格尺寸逐渐变大。确定性 分析的最大地表沉降为 0.048 m,耗时约 13 秒。由于 部分网格尺寸超过了自相关距离,随机场模拟时需要 考虑空间平均效应。采用协方差矩阵分解法^[18]模拟随 机场,同一高程单元赋予同一随机变量,共需 45 个随 机变量。一次典型随机场模拟结果如图 6(a)所示,其 对应的最大地表沉降为 0.058 m。

附录 B:

附录A:

该浅基础算例改自文献^[27],条形基础长 10 m、宽 2 m、埋深 0.5 m,受大小为 500 kPa 的竖向均布荷载 作用。土体弹性模量为不确定性参数,服从均值为 60 MPa、变异系数为 0.15 的对数正态分布,采用水平自

9

相关距离为 10 m、竖向自相关距离为 1 m 的平方指数 型相关结构来描述其三维空间变异性。其他为确定性 参数, 土体黏聚力 20 kPa、内摩擦角 30 °、剪胀角 20 °、 重度 18 kN/m³、泊松比 0.3。以中心沉降超过 0.04 m 作为基础失效判据。

目标有限元模型如图 6(b)右图所示,因受到三维 空间变异性的作用而不能对称建模,研究区域取 30 m×22 m×9.5 m,共划分 60192 个单元。确定性分析的 基础中心沉降为 0.0307 m,耗时约 24 分钟。采用最 优线性估计法^[18]模拟三维随机场,以随机场离散精度 达 95%为准,共需 150 个随机变量。一次典型随机场 模拟结果如图 6(b)所示,基础发生不均匀沉降,中心 沉降为 0.0309 m。取中心剖面建立二维有限元模型作 为简化模型(图 6(b)左图),共划分 792 个单元。其确 定性分析的中心沉降为 0.0327 m,耗时约 12 秒;计 算的随机场中心沉降为 0.0330 m。由此可见,二维模 型可能会高估基础沉降。

附录 C:

该边坡算例改自文献^[19], 土质边坡长 100 m、高 6 m、坡角 26.6°、坡顶距基岩面 10 m。土体不排水抗 剪强度为不确定性参数, 服从均值为 30 kPa、变异系 数为 0.3 的对数正态分布,采用水平自相关距离为 20 m、竖向自相关距离为 2 m 的平方指数型相关结构来 描述其三维空间变异性。其他为确定性参数,土体重 度 19 kN/m³、弹性模量 100 MPa、泊松比 0.3。以安 全系数小于 1 作为边坡失稳判据、滑块体积作为简化 的边坡失效后果。

目标有限元模型如图 6(c)右图所示,坡顶和坡脚 分别外延 18 m 和 10 m,按 1 m×1 m×1 m 网格尺寸共 划分 31000 个单元。确定性分析的边坡稳定安全系数 为 1.593,边坡沿纵向发生整体滑动,滑面形态接近圆 柱形,滑块体积为 9068 m³,耗时约 40 分钟。采用最 优线性估计法^[18]模拟三维随机场,以随机场离散精度 达 95%为准,共需 120 个随机变量。一次典型随机场 模拟结果如图 6(c)所示,安全系数为 0.741,边坡沿纵 向发生局部滑动,滑面形态接近球形,滑块体积为 1365 m³。采用粗糙网格的三维有限元模型作为简化模 型(图 6(c)左图),按 2 m×2 m×5 m 网格尺寸共划分 1580 个单元。其确定性分析的安全系数为 1.651,耗 时约 48 秒,滑块体积为 7030 m³;计算的随机场安全 系数为 0.795,滑块体积为 860 m³。由此可见,粗糙 网格模型可能会高估安全系数、低估滑块体积。

图 6 有限元模型及典型随机场模拟结果: (a) 基坑算例; (b) 浅基础算例; (c) 边坡算例

Fig. 6 Finite element models and typical random field simulation results: (a) excavation example; (b) shallow foundation example; (c) slope example