倾斜层状地基的精准边界元法及其应用

肖 莎¹, 岳中琦^{2,3}

(1. 北京工业大学城市与工程安全减灾教育部重点实验室,北京 100124; 2. 哈尔滨工业大学理学院,

广东 深圳 518055; 3. 香港大学土木工程系, 香港 999077)

摘 要:本文发展了一种新型边界元法,精准计算基础载荷作用下倾斜层状地基附加应力和沉降。该边界元法采用作 者最新发展的横观各向同性层状材料基本解,8结点等参单元离散加载域及其附近区域的边界,6结点无穷单元离散远 场边界。引入结点位于单元内部的不连续单元,消除边界积分方程自由项系数的求解困难,给出离散边界积分方程中非 奇异和奇异积分的数值计算方法。数值验证表明发展的数值方法具有很高的计算精度和效率。算例分析详细揭示了层 状岩土材料各向异性和倾斜分层对弹性场的影响。

关键词:倾斜层状地基;横观各向同性;边界元法;附加应力和沉降 中图分类号:O34 文献标识码:A 文章编号: 作者简介:肖莎(1994—),女,博士,助理研究员,主要从事非均匀岩土介质弹性力学和边界元法等方面的研究。Email:xiaosha@bjut.edu.cn。

Precise boundary element method for non-horizontally layered foundations and its applications

XIAO Sha¹, YUE Zhongqi^{2,3}

(1. Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education,

Beijing University of Technology, Beijing 100124, China, 2. School of Science, Harbin Institute of Technology, Shenzhen 518055, China; 3. Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China)

Abstract: This paper develops the new boundary element method (BEM) for accurately calculating additional stresses and settlements in non-horizontally layered foundations. The proposed BEM utilizes the fundamental solutions of multilayered solids with transverse isotropy (TI) under point-concentrated loads. Eight-noded isoparametric elements are used to discretize a core region around the traction area whereas six-noded infinite elements are used to discretize a far-field region beyond the traction area. To avoid calculating the coefficient of the free term for the source point at the strike line between the boundary and material interface, the discontinuous isoparametric and infinite elements with nodes located within elements are positioned near the strike lines. Numerical methods for non-singular and various singular integrals in the discretized boundary integral equations are developed. Numerical verification shows that the present BEM has very high accuracy and computational efficiency. Numerical examples illustrate the effects of anisotropy and non-horizontal layered structures of the foundations on the elastic fields in detail. **Key words**: non-horizontally layered foundations; transverse isotropy (TI); BEM; additional stresses and settlements

0 引言

建筑物荷载会导致地基应力状态发生变化,进而 引起建筑物沉降。如果在地基岩土体内引起的应力过 大,会使建筑物产生较大的沉降和沉降差。地基附加 应力场和沉降的变化规律是地基和建筑物设计的重要 依据。经典计算方法假设地基为线弹性各向同性均匀 介质,采用点集中垂直或水平荷载作用下弹性场的解 析解和积分方法计算不同类型荷载作用下地基内附加

应力场和沉降[1]。

天然地基是非均匀的和各向异性的。为了便于数 学推导和分析,通常假设地基是分层的。早在 1945 年, Burminster^[2]研究了分布荷载作用下层状地基的弹性 场,Chen^[3]发展了均匀矩形荷载作用下各向同性双层 半无限地基内弹性场的解析表达式,Xiao 和 Yue^[4]矩

收稿日期: 2024-01-02

基金项目:国家自然科学基金资助(42207182),北京市自然科学基金资助(8242006)

形荷载作用下双层横观各向材料全空间的弹性解析解, 朱桂春等^[5]给出了横观各向同性层状地基变形的近似 解,时刚等^[6]发展了饱和层状地基的基本解,Pan^[7]发 展了不同类型荷载作用下层状半无限地基的 Green 函 数并详细回顾了这一领域的研究进展。横观各向同性 模型是一种简单的且能反映地基各向异性特点的力学 模型,并在地基分析中被广泛采用^[8-11]。

将基础视为刚性结构或弹性体, 艾智勇等^[10]研究 了横观各向同性水平层状地基上弹性矩形板的参数的 影响, Poulos^[12]研究了点荷载作用下刚性基础置于水 平层状地基之上的弹性场, Chow^[13]发展了分析加载域 任意形状的各向同性水平层状地基的数值方法, 林皋 等^[14]分析了水平层状地基任意刚性基础动力响应, 巴 振宁等^[15]研究了层状横观各向同性地基上明置条形 基础平面内动力刚度系数。应用弹性力学层状模型, Yue 等^[16]解释了水平层状地基中标准贯入的试验结果, 黄茂松等^[17]分析了层状地基中标准贯入的试验结果, 黄茂松等^[17]分析了层状地基中复合地基的水平和摇 摆震动问题, 王志新等^[18]推导了飞机荷载引起的层状 地基附加应力场。

现场调查发现,地基土的变形模量通常随深度逐渐增大,这种现象在砂土中尤为常见。为此, Selvadurai^[19]研究了剪切模量沿深度变化的各向同性 地基中的弹性场,为便于分析,通常假设土体的剪切 模量是深度的幂指数或线性函数。Xiao等^[20,21]研究横 观各向同性层状地基中圆形环状荷载引起的弹性场, 并采用沿深度分层逼近的方法给出了圆形荷载作用下 任意非均质地基的弹性场。

上述文献分析发现,以往的研究大多将非均匀地 基视为水平层状的或者是沿深度非均匀的。受地基形 成环境影响和建筑物设计要求,层状地基的岩土层界 面往往是倾斜的。一些学者已经研究了各向同性倾斜 层状地基。Almeida 等^[22]和 Moser 等^[23]采用多区域边 界元法研究了边界荷载作用下半无限双层倾斜地基弹 性场。Xiao 等^[24]发展了单区域边界元法并分析了表面 荷载作用下多层倾斜层状地基弹性场,建议方法采用 了各向同性层状材料基本解,避免了地层界面的离散。

本文采用作者最新提出的横观各向同性层状材料 基本解^[25]发展边界元法,分析了图1所示的表面任意 分布形式荷载p(x,y)作用下倾斜层状地基的弹性场。 倾斜层状地基的边界面(z=0)与地层界面之间的夹 角为θ,每一层为横观各向同性岩土介质。在发展分析 该问题的边界元法时,基本解直接耦合于传统的边界 积分方程中,在荷载作用区域及其附近区域采用等参 单元离散,在远离该区域的水平边界上采用无穷单元 离散以考虑远场的影响。引入不连续单元考虑材料界 面的影响,给出了离散边界积分方程中各类奇异积分 的精确数值方法。最后开展了本方法的数值验证,分 析了倾角变化对倾斜层状地基的影响,并与均匀地基 和水平层状地基的弹性场进行了对比分析。

图 1 边界荷载作用下横观各向同性倾斜分层地基 Fig. 1 Non-horizontally layered and TI foundations under the action of boundary tractions

1 倾斜层状地基的边界积分方程

1.1. 横观各向同性层状材料基本解

最近, Xiao 等^[25]给出了点集中荷载作用下横观各 向同性层状无限域的闭合解析解。参考图 1, 层状无 限域由 n 层有限厚度层和上下半无限域组成,每一层 为均匀的横观各向同性介质, 层与层之间完全粘结, 并且每一层的各向同性面互相平行, 层数 n 为任意的 非负整数。图 1 中,每一层的厚度为h_i,界面位置用 H_0, H_1, \cdots, H_n 表示。在局部坐标系O'x'y'z'下,采用经 典的 Fourier 积分变换和向后传递矩阵技术,并利用材 料界面的连续性条件推导该问题的闭合解析解。为发 展图1所示问题的边界元法,需将局部坐标系下基本 解的物理量转换为整体坐标系下对应的物理量。在整 体坐标系Oxyz下,基本解的位移和应力分别用 $u_{ii}^{*}(P,Q)$ 和 $\sigma_{iii}^{*}(P,Q)$ 表示,其中P和Q分别为场点和源 点。位移u_{ii}(P,Q)奇异性的阶数为O(1/r),应力 $\sigma_{iii}^*(P,Q)$ 奇异性的阶数为 $O(1/r^2)$,其中 r 为源点 P 和 场点Q之间的距离。该解析解可用来发展边界元法分 析各类复杂的层状介质力学问题。

1.2 倾斜层状地基的边界积分方程

图 2 为横观各向同性倾斜层状地基的外边界面。 交界面走向线为倾斜层状地基材料界面与边界的交线。 边界面 *S* 分为两部分: *S_F*和*S_I*,分别表示加载区域和 附近区域以及远离加载区域的远场区域。不考虑体力 情形下,倾斜层状地基的边界积分方程为:

 $c_{ij}(P)u_{j}(P) + \int_{S} t_{ij}^{*}(P,Q)u_{j}(Q)dS(Q) =$ $\int_{S} u_{ij}^{*}(P,Q)t_{j}(Q)dS(Q)_{\circ}$ (1) 式中, *t_j(Q*)和*u_j(Q*)分别为边界场点的面力和位移, *t_{ii}(P,Q*)分别为层状无限域基本解的位移和面力。

图 2 倾斜层状地基边界面的分区 $(S = S_F + S_I)$ Fig. 2 Subdomains of boundaries on non-horizontally layered foundations $(S = S_F + S_I)$

式(1)中面力
$$t_{ij}^*(P,Q)$$
能进一步表示为:
 $t_{ij}^*(P,Q) = \sigma_{ijl}^*(P,Q)n_l$ 。 (2)

式中, n_l(Q)为边界场点 Q 处的外法线方向余弦。

式(1)中 $c_{ij}(P)$ 为自由项系数,仅与层状材料基本 解面力的渐进状态和源点P所处位置的边界几何形状 有关。当源点P位于光滑界面且不在层间交界面走向 线时, $c_{ij}(P) = 0.5\delta_{ij}$ 。当源点P位于层间交界面走向 线时,计算自由项系数 $c_{ij}(P)$ 是困难的。本文选用不连 续单元避免了直接计算自由项系数。

求解式(1),可获得边界上的位移和面力。地基内 任意点的位移可用下式计算:

 $u_{i}(p) = -\int_{S} t_{ij}^{*}(p,Q)u_{j}(Q)dS(Q) + \int_{S} u_{ij}^{*}(p,Q)t_{j}(Q)dS(Q) \circ$ (3)

利用式(3)、几何方程和物理方程,地基内任意点 的应力可用下式计算:

$$\sigma_{ij}(p) = -\int_{S} T^{*}_{ijk}(p,Q)u_{k}(Q)dS(Q) + \int_{S} U^{*}_{ijk}(p,Q)t_{k}(Q)dS(Q)$$
。(4)
式中, $T^{*}_{ijk} \pi U^{*}_{ijk}$ 为新的核函数,可用基本解面力

 $t_{ij}^*(P,Q)$ 、位移 $u_{ij}^*(P,Q)$ 和物理方程计算得到。

2 边界积分方程的离散技术

采用图 3 所示两种 8 结点等参单元离散边界 S_F 。 I 型等参单元用于离散远离走向线两侧的核心区域 S_F 。 II 型等参单元为不连续单元,结点 1、5 和 2 的局部坐 标 $\eta = -2/3$,用于离散走向线两侧的核心区域 S_F 。以 往的分析揭示,当结点 1、5 和 2 的局部坐标 $\eta = -2/3$, 可以取得很好的计算精度^[24]。

3

Fig. 3 Two types of 8-noded isoparametric elements

I 和 Ⅱ 型等参单元内任意点的坐标、位移和面力 可由单元的 8 个结点上相应的物理量及其形函数计算 求得:

$$x = \sum_{\alpha=1}^{8} N_{\alpha}(\xi, \eta) x^{\alpha}, \quad y = N_{\alpha}(\xi, \eta) y^{\alpha},$$
$$z = \sum_{\alpha=1}^{8} N_{\alpha}(\xi, \eta) z^{\alpha}, \quad (5a)$$

 $u_i = \sum_{\alpha=1}^8 N_\alpha(\xi, \eta) u_i^{\alpha}, t_i = \sum_{\alpha=1}^8 N_\alpha(\xi, \eta) t_i^{\alpha}$ 。(5b) 式中, (x, y, z)为单元内任意点的坐标, $u_i n t_i$ 为单元 内任意点三个方向上的位移和面力, $(x^{\alpha}, y^{\alpha}, z^{\alpha})$ 为 8 个结点的坐标, $u_i^{\alpha} n t_i^{\alpha} h 8$ 个结点三个方向上的位移 和面力, $N_{\alpha}(\xi, \eta)$ 为 8 结点等参单元的形函数^[24]。

采用图4所示的三种6结点无穷单元离散边界S_I。
 I型为连续无穷单元, II 和 III 型为不连续无穷单元。
 II 型无穷单元 2 和 3 号结点的局部坐标ξ = 2/3, III 型
 无穷单元 1 和 4 号结点的局部坐标ξ = -2/3。

Moser 等^[23]详细研究了无穷单元位置对计算结果的影响。Xiao^[24]借鉴了 Moser 等构造无穷单元的方法。 I 型无穷单元布置在远离交界面走向线的区域, II 和 III 型不连续的无穷单元布置在交界面走向线两侧。

无穷单元内任意一点的坐标、位移和面力可以表 示为

$$\begin{aligned} x &= \sum_{\alpha=1}^{6} {}^{\infty} N_{\alpha}(\xi, \eta) x^{\alpha}, \\ y &= \sum_{\alpha=1}^{6} {}^{\infty} N_{\alpha}(\xi, \eta) y^{\alpha}, \\ z &= \sum_{\alpha=1}^{6} {}^{\infty} N_{\alpha}(\xi, \eta) z^{\alpha}, \\ u_{i} &= \sum_{\alpha=1,2,5} {}^{\infty} N_{\alpha}^{u}(\xi, \eta) u_{i}^{\alpha}, \end{aligned}$$
(6a)

 $t_i = \sum_{\alpha=1,2,5} {}^{\infty} N^t_{\alpha}(\xi,\eta) t_i^{\alpha} .$ (6b)

式中, $^{\infty}N_{\alpha}(\xi,\eta)$ 为无穷单元的形函数, $^{\infty}N_{\alpha}^{u}(\xi,\eta)$ 和 $^{\infty}N_{\alpha}^{t}(\xi,\eta)$ 为无穷单元位移和面力的插值函数^[24]。

采用上述单元离散边界的核心区域S_F和远场区域 S_I。边界积分方程(1)的离散形式为:

 $c_{ij}(P)u_j(P) +$

 $\sum_{e=1}^{FBE} \sum_{\alpha=1}^{8} u_j^{\alpha}(Q^{\alpha}) \int_{S_e^e} t_{ij}^*(P,Q) N_{\alpha} dS(Q) +$

 $\sum_{e=1}^{IBE} \sum_{\alpha=1}^{6} u_j^{\alpha}(Q^{\alpha}) \int_{S_{\epsilon}^e} t_{ij}^*(P,Q)^{\infty} N_{\alpha}^u dS(Q) =$

 $\sum_{e=1}^{FBE} \sum_{\alpha=1}^{8} t_j^{\alpha}(Q^{\alpha}) \int_{S_{\alpha}^e} u_{ij}^*(P,Q) N_{\alpha} dS(Q) +$

 $\sum_{e=1}^{IBE} \sum_{\alpha=1}^{6} t_j^{\alpha}(Q^{\alpha}) \int_{S_r^e} u_{ij}^*(P,Q)^{\infty} N_{\alpha}^t dS(Q).$

式中, FBE 和 IBE 分别表示等参单元和无穷单元的总数。

求解方程(7)时,首先求解边界上所有结点的位移 和面力的系数,然后建立关于结点未知位移和面力的 线性方程组。为减少计算时间,采用广义最小残差法 (GMRES 迭代法)求解系数矩阵为满阵的线性方程 组。

采用与边界积分方程(7)相同的网格离散方程(3) 和(4)。求解方程(7)后,边界结点的位移和面力全部已 知。将边界结点的位移和面力代入离散的方程(3)和(4) 中,便很容易获得域内点的位移和应力。

3 边界积分方程中各类积分的计算方法

在离散的边界积分方程(7)中,结点面力和位移的 系数为含有基本解的积分。由于基本解的位移和面力 具有奇异性,式(7)中的积分具有下列特点,并需要采 用相应方法计算:

(1) 当源点 P 不在积分单元上或者 P 在积分单
 元上且P ≠ Q时,式(7)中所有的积分均为非奇异的,
 可采用高斯数值积分方法计算。

(2) 当源点 P 在积分单元上且P = Q,式(7)右端

两项积分为弱奇异的。可以在积分单元上以源点 P 为 顶点,将单元离散成若干三角形;然后将每一个三角 形和2×2正方形建立映射关系,并在该正方形上积分, 此时被积函数为非奇异的,可采用高斯数值积分计算。

(3) 当源点 *P* 在积分单元上且*P* = *Q*,式(7)左端 两项积分为强奇异的。由于采用了无穷单元,传统的 刚体位移不再适用。可以在积分单元上以源点 *P* 为顶 点,将单元离散成若干三角形,在每一个三角形*P*点上 建立极坐标系(ρ , θ),然后将关于(ξ , η)积分转换为在 (ρ , θ)下的积分。在新坐标系下,关于 θ 的积分为非奇 异的,可采用高斯数值积分计算,关于 ρ 的积分降阶为 $O(1/\rho)$ 的奇异积分,可采用 Kutt 数值积分计算。

(4) 当源点P不在积分单元上,但距离场点Q比 较近的情形下,由于被积函数中基本解的位移和面力 变化剧烈,此类积分称为几乎奇异积分。式(2)和(3)同 样存在此类奇异积分。本文发展了自适应数值积分法 计算几乎奇异积分。如图5所示,采用被积单元离散 的方法,根据被积函数的奇异性,确定被积单元离散 为子区域数量,然后再在每一个子区域上积分,实现 几乎奇异积分高精度计算。

图 5 二维单元的离散

Fig. 5 Discretization of a two-dimensional element 沿 ξ 方向离散数量 N_{ξ} 和沿 η 方向的离散数量 N_{η} 用 下式确定:

$$N_{\xi} = INT[(R/L)_{min}/(R/L_{\xi})],$$

$$N_{\eta} = INT[(R/L)_{min}/(R/L_{\eta})]_{\circ}$$
(8)

式中,*INT*表示对计算结果取整, L_{ξ} 和 L_{η} 分别表示沿 ξ 和 η 方向单元的长度,*R*为场点到单元的最小距离, $(R/L)_{min}$ 为当取4个高斯积分点且积分误差为10⁻³时*R/L*的最小值。

每一个含几乎奇异积分单元的积分表达式可进一 步写为:

$$\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) \, d\xi d\eta =$$

$$\Sigma_{s_{1}=1}^{N_{\xi}} \Sigma_{s_{2}=1}^{N_{\eta}} \{ \Sigma_{k=1}^{4} \Sigma_{l=1}^{4} f(\bar{\xi}, \bar{\eta}) \bar{J} \bar{w}_{1} \bar{w}_{2} \}_{s_{1}, s_{2}}^{\circ}$$
(9)
局部坐标系(ξ, η)和($\bar{\xi}, \bar{\eta}$)之间的关系为:

$$\xi = \frac{1}{2}(\xi^{s} + \xi^{e}) + \frac{\bar{\xi}}{N_{\xi}}, \ \eta = \frac{1}{2}(\eta^{s} + \eta^{e}) + \frac{\bar{\eta}}{N_{\eta}}.$$
 (10)

式中, (*ξ^s*, *η^s*)和(*ξ^e*, *η^e*)为子区域起止边的局部坐标。 雅可比行列式的值为

$$\bar{J} = \frac{\partial \xi}{\partial \bar{\xi}} \frac{\partial \eta}{\partial \bar{\eta}} = \frac{1}{N_{\xi} N_{\eta}}$$
(11)

式(8)中 L_{ξ} 和 L_{η} 由下式确定

$$L_{\xi} = \int_{-1}^{1} \sqrt{\sum_{j=1}^{3} \left(\sum_{\alpha=1}^{8} \frac{\partial N_{\alpha}}{\partial \xi} x_{j}^{\alpha} \right)_{\eta=0}^{2}},$$
$$L_{\eta} = \int_{-1}^{1} \sqrt{\sum_{j=1}^{3} \left(\sum_{\alpha=1}^{8} \frac{\partial N_{\alpha}}{\partial \eta} x_{j}^{\alpha} \right)_{\xi=0}^{2}}.$$
(12)

迭代法用来计算场点 Q 到单元的最小距离 R。单元局部坐标原点(ξ , η) = (0,0)作为迭代计算的起始点, Taylor 级数展开式和 New-Raphson 迭代法用来确定下 一迭代步的步长。

4. 数值验证

选择图 6 所示两层铺路模型进行数值验证。为便 于分析,柱坐标系 $Or\theta z$ 系在该模型上。该模型由两个 有限厚度层和下半无限均匀介质组成。第二层有限厚 度层为横观各向同性介质,其余两层为各向同性介质, 弹性参数和各层的厚度如图 6 所示。在圆形区域(0 \leq $r \leq 15$ cm)上作用均匀荷载,荷载大小为P = 49 kN。 Ozawa 等^[8]和 Cai 等^[11]分析了这一问题。实际上,该 问题为倾斜层状地基一种特殊情况,即 $\theta = 0^{\circ}$ 。

将圆形加载域离散成 48 个 I 型等参单元,由加载 边沿向外增加 4 个圆环: $15 \le r \le 20$ cm、 $20 \le r \le$ 30 cm、 $30 \le r \le 45$ cm、 $45 \le r \le 60$ cm,每一个 圆环离散成用 16 个 I 型等参单元离散。 $r \ge 90$ cm区 域用 16 个 I 型无穷单元离散。表 1 列出了水平边界上 距加载中心不同距离处竖向位移 u_z 数值解,并给出 Cai 等^[12]的计算结果。两者最大的相对误差为 2.4%。

图 6 两层铺路模型 Fig. 6 A two-layered pavement model

表1 层状铺路模型表面竖向位移(mm)

Table 1 Vertical displacements on the boundary for the pavement

model (mm)					
距离 r	0	200	600	900	1200
Cai 等 ^[11]	0.49	0.43	0.31	0.24	0.19
数值解	0.4975	0.4402	0.3052	0.2352	0.1857
相对误差(%)	1.5	2.4	1.5	2.0	2.2

5. 算例分析

5.1 概述

图 7 为由三种岩石组成的倾斜分层地基,水平边 界正方形区域上作用均匀荷载p = 100 MPa。整体坐标的原点位于正方形荷载的中心,荷载的分布区域为 $|x| \le 1$ m和 $|y| \le 1$ m。在图 1 所示的局部坐标 $Ox'y'z'中,6个弹性参数(E_{x'}, E_{z'}, v_{x'y'}, v_{x'z'}, \mu_{x'y'}, \mu_{x'z'})$ 用于描述横观各向同性材料的性质,其中 $E_{x'}, v_{x'y'}, \mu_{x'y'}$ 为各向同性面的弹性参数($\mu_{x'y'} = E_{x'}/2(1 + v_{x'y'})$), $E_{z'}, v_{x'z'}, \mu_{x'z'}$ 为垂直于各向同性 面的弹性参数。各向同性弹性介质的 $E_{x'}/E_{z'} = 1$, $v_{x'y'}/v_{x'z'} = 1$ 和 $\mu_{x'y'}/\mu_{x'z'} = 1$ 。

设计表 2 所示的四种类型岩石,其中岩石 1 为各 向同性介质,岩石 2-6 为横观各向同性介质,并假设 $E_{x'} = 50$ GPa、 $v_{x'y'} = 0.25$ 。图 8 为加载区域及其临 近区域的离散网格。在水平边界和材料界面交界线(图 中红线)两侧布置不连续单元,网格共有 320 个等参 单元,64 个无穷单元和 1231 个结点。

设计如下5种类型的地基用于计算和对比分析:

(1)均质地基 C1 和 C2:由岩石 1 组成的各向 同性均质地基 C1 和由岩石 3 组成的横观各向同性均 质地基 C2。

(2)水平层状地基 C3:由岩石 3 和 2 组成的水 平层状地基,上部有限厚度层为岩石 3,厚度为 0.5m, 下部半无限域为岩石 2。

 (3)图7所示的倾斜层状地基C4、C5和C6,
 由岩石2、3和4组成的倾斜层状地基,分别对应倾角 θ = 60°,90°,120°。

表 2 横观各向同性岩石的弹性参数
Table 2 Elastic parameters of TI rocks

		1		
	岩石类型	$E_{x'}/E_{z'}$	$\nu_{x'y'}/\nu_{x'z'}$	$\mu_{x'y'}/\mu_{x'z'}$
1:	各向同性	1	1	1
2:	横观各向同性	3.0	1	1
3:	横观各向同性	1	1	0.8
4:	横观各向同性	2.0	1	1

岩 土 工 程 学 报 Chinese Journal of Geotechnical Engineering

图 7 由三种岩石组成的倾斜层状地基

Fig. 7 Non-horizontally layered model with three different rocks

Fig. 8 Discretization of a loading area and its neighboring area

5.2 沿水平x方向弹性场的变化

图 9-11 给出了($|x| \le 5$ m, y = 0.5 m, z = 1 m) 处的位移和应力分布。为描述层状地基应力的连续性, 定义界面 $x = a^{-} \pi a^{+}$ 上应力的间断值为: $|\sigma_{ij}(x = a^{+}) - \sigma_{ij}(x = a^{-})|$,其中x = a为地层界面与z = 1 m 交点的位置。从图 9-11 中,可以发现弹性场有如下分 布规律。

(1) 位移分量(u_x, u_y, u_z)

图 9 给出了位移分量 (u_x, u_y, u_z) 沿x方向的变化 (y = 0.5 m, z = 1 m)。图中竖向虚线为水平线 (x, 0.5 m, 1 m)与层状地基地层界面的交点。地基C1、 C2 和 C3 的 u_x 关于x = 0反对称, 而 u_y 和 u_z 关于x = 0对称。地基 C4、C5 和 C6 的位移是不光滑连续的, 这 种现象在某些位置非常明显, 如: u_x 和 u_y 在 $\theta =$ 60°,90°,120°的界面处。此外, 地基 C3 的位移 u_y 和 u_z 明显比其它类型地基的要大, 主要原因为其上部有 限厚度层的弹性模量是所有四种岩石中最小的。

(2) 正应力(σ_{xx}, σ_{yy}, σ_{zz})

图 10 给出了正应力($\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$)沿 x 方向的变 化 (y = 0.5, z = 1 m),表 3 给出了不同倾角条件下 倾斜层状地基地层界面的正应力间断值。地基 C1 和 C2 的三个正应力分量均为光滑连续的,并且是关于 y = 0对称分布的。沿水平方向,地基 C3 的三个正应 力分量均为光滑连续的,并且是关于y = 0对称分布的。 沿水平方向,倾斜层状地基 C4、C5 和 C6 中正应力有 明显的不同的变化规律:

 σ_{xx} 分布特征为: $\theta = 60^{\circ}$ 时,在地层界面x =

-0.42和1.58 m 上间断值分别为 8.3999 和 11.3703 MPa; $\theta = 90^{\circ}$ 时,在界面x = -1和 1m 上是连续的,满足界面连续条件; $\theta = 120^{\circ}$ 时,在界面x = -1.58和 0.42 m 上间断值分别为 14.7349 和 2.4015MPa,并且 在界面x = -1.58 m 的左侧出现大小为 6.2284 MPa 的 拉应力。

 $σ_{yy}$ 分布特征为: θ = 60°时,在地层界面x = -0.42和1.58 m 上间断值分别为 4.13845 和 2.6056 MPa; θ = 90°时,在界面x = -1和 1 m 上间断值分别为 6.5755 和 1.2066 MPa,并且在x = -1m 的左侧出现大小为 3.6868 MPa 的拉应力; θ = 120°时,在界面x = -1.58和0.42 m 上间断值分别为 7.3428 和 8.6723 MPa,并且在界面x = -1.58 m 的左侧出现大小为 3.3346 MPa 的拉应力。

 σ_{zz} 分布特征为: $\theta = 60^{\circ}$ 时,在地层界面x = -0.42和1.58 m 上间断值分别为 29.3391 和 8.7858 MPa; $\theta = 90^{\circ}$ 时,在界面x = -1,1m上间断值分别为 26.9099 和 17.8794 MPa; $\theta = 120^{\circ}$ 时,在界面x = -1.58和0.42 m 上间断值分别为 13.9174 和 20.004 MPa,并在x = -1.58 m的左侧出现大小为 0.4105 MPa 的拉应力。

在表 3 中进一步发现,正应力间断值随着倾角 θ 的变化而变化。在 $\theta = 90^{0}$ 时,即两个界面垂直与水平边界,正应力 σ_{xx} 间断值为零,这意味着 σ_{xx} 是连续的, 恰好满足界面上应力的连续性条件。进一步验证了数 值方法的计算精度。

图 10 正应力沿水平方向的变化 ($y = 0.5\pi z = 1m$) Fig. 10 Variations of normal stresses along the horizontal direction (y = 0.5 and z = 1m)

表 3 不同倾角条件下倾斜层状地基界面的正应力间断值 (MPa) Table 3 Jumps of the normal stresses across the interfaces for different inclination angles (MPa)

θ	σ_{xx}		σ_{yy}		σ_{zz}	
(°)	界面 1	界面 2	界面1	界面 2	界面 1	界面 2
60	8.3999	11.3703	4.1384	2.6056	29.339	8.7858
90	0.0000	0.0000	6.5755	1.2066	26.9099	17.8794
120	14.7349	2.4015	7.3428	8.6723	13.9174	20.0039

(3) 切应力 $(\sigma_{xy}, \sigma_{xz}, \sigma_{yz})$

图 11 给出了切应力($\sigma_{xy}, \sigma_{xz}, \sigma_{yz}$)沿 x 方向的变化 ($y = 0.5\pi z = 1m$),表4给出了地基C4、C5和C6 界面的切应力间断值。地基C1、C2和C3的 $\sigma_{xy}\pi\sigma_{xz}$ 是关于y = 0是反对称分布的而 σ_{yz} 是关于y = 0是对称分布的。C1和C2的三个切正应力分量均为连续的, 而地基C3的切应力在界面上有间断现象。沿水平方 向,地基C4、C5和C6中切应力有明显的不同的变化 规律。

 σ_{xy} 分布特征为: $\theta = 60^{\circ}$ 时,在地层界面x = -0.42和1.58 m 上 σ_{xy} 的间断值分别为 8.3999 和 11.3703 MPa; $\theta = 90^{\circ}$ 时,在界面x = -1和1m上 σ_{xy} 是连续的,满足界面连续条件; $\theta = 120^{\circ}$ 时,在界面x = -1.58和0.42 m上 σ_{xy} 的间断值分别为 14.7349 和 2.4015 MPa。

 σ_{xz} 分布特征为: $\theta = 60^{\circ}$ 时,在地层界面x = -0.42和1.58 m上间断值分别为3.0046和0.007 MPa; $\theta = 90^{\circ}$ 时,在界面x = -1和1m上连续的,满足界面条件; $\theta = 120^{\circ}$ 时,在界面x = -1.58和0.42m上间断值分别为2.2408和3.4545 MPa。

 $σ_{yz}$ 分布特征为: $θ = 60^{\circ}$ 时,在地层界面x = -0.42和1.58 m上间断值分别为2.2134和0.7746 MPa; $θ = 90^{\circ}$ 时,在界面x = -1和 1 m 上间断值分别为 1.9836和1.9660 MPa; $θ = 120^{\circ}$ 时,在界面x = -1.58和0.42 m上间断值分别为0.7841和2.1519 MPa。

表 4 不同倾角条件下倾斜层状地基界面的切应力间断值(MPa)

Table 4 Jumps of the shear stresses across the interfaces for different inclination angles (MPa)

θ	σ_{xy}		σ_{χ_Z}		σ_{yz}	
(°)	界面 1	界面 2	界面1	界面 2	界面1	界面 2
60	8.3999	11.3703	3.0046	0.0046	2.2134	0.7746
90	0.0000	0.0000	0.0000	0.0000	1.9836	1.9660
120	14.7349	2.4015	2.2408	3.4545	0.7841	2.1519

在表 4 中进一步发现,切应力的间断值随着倾角 θ 的变化而变化。在 $\theta = 90^{\circ}$ 时,即两个材料界面垂直 于外部水平边界,切应力 σ_{xy} 和 σ_{xz} 间断值为零,这意 味着这两个应力分量是连续的,满足界面上应力连续 性条件。进一步验证了数值方法的计算精度。

5.3 沿深度z方向弹性场的变化

图 12-14 给出了(x = 0, y = 1 m, $0 \le z \le 4$ m)处 的位移和应力分布。同样,为描述倾斜地基应力的连 续性,定义界面 $z = b^- \pi b^+ \bot cc$ 力的间断值为: $|\sigma_{ij}(z = b^+) - \sigma_{ij}(z = b^-)|$,其中z = b为地层界面与 (x = 0, y = 1 m)交点的位置。水平层状地基(C3)和 倾斜层状地基(C4 π C5)的地层界面分别在b = 0.5和1.73 m。从这些图中,可以发现弹性场有如下分布 规律。

(1) 位移分量(u_x, u_y, u_z)

图 12 给出了位移分量 (u_x, u_y, u_z) 沿z方向的变化 (x = 0, y = 1 m)。C1 和 C2 为均匀地基,C3 为水平 层状地基,且C2 和 C3 地基的各向同性面平行于外部 边界。在这些情形下,地基是关于坐标面0yz对称的, $u_x(0, y, z) = 0$ 。但对于倾斜层状地基 C4、C5 和 C6, 此处的 $u_x(0, y, z) = 0$, C4 和 C6 的位移 u_x 远比 C5 的 大。对比发现,各向异性、层状非均匀和倾角变化同 样对 u_y 和 u_z 产生明显的影响。如预期一致,所有情形 下位移均是连续的,只有地基 C4 和 C6 在界面z =1.73 m处有明显的非光滑连续。

(x = 0 and y = 1 m)(2) 正应力 $(\sigma_{xx}, \sigma_{yy}, \sigma_{zz})$

图 13 给出了 (σ_{xx} , σ_{yy} , σ_{zz}) 沿z方向的变化(x = 0, y = 1 m)。在界面z = 0.5 m上,水平层状地基 C3 的 σ_{xx} 和 σ_{yy} 是间断的,间断值分别为 9.5971 和 9.5968 MPa,而 σ_{zz} 是连续的。在界面z = 1.73 m上,倾斜层 状地基 C4 和 C6 的 σ_{xx} 、 σ_{yy} 和 σ_{zz} 均为间断的。对于 C4 和 C6,在z = 1.73 m处, σ_{xx} 的间断值分别为 10.2482 和 4.0380MPa, σ_{yy} 的间断值分别为 4.0503 和 0.1144 MPa, σ_{zz} 的间断值分别为 19.6017 和 13.2402 MPa,此外在 C4 界面处出现较大的拉应力,这些位置 可能会出现拉破坏或剪切破坏。而 C5 情形下两个界 面位于 $x = \pm 1$ m,所以这些图中不能体现应力的间断 特征。

(3) 切应力($\sigma_{xy}, \sigma_{xz}, \sigma_{yz}$)

图 14 给出了切应力 $(\sigma_{xy}, \sigma_{xz}, \sigma_{yz})$ 沿z方向的变化 (x = 0, y = 1 m)。地基 C1、C2 和 C3 是关于坐标面 Oyz对称的, $\sigma_{xy}(0, y, z) = \sigma_{xz}(0, y, z) = 0$ 。但对倾斜 地基 C4、C5 和 C6, $\sigma_{xy}(0, y, z) \neq 0, \sigma_{xz}(0, y, z) \neq 0$, 且在 C4 和 C6 情形下, σ_{xy} 和 σ_{xz} 在地层界面上是间断 的, σ_{xy} 的间断值分别为 0.9410 和 0.7063 MPa, σ_{xz} 的 间断值分别为 0.0941 和 1.1885 MPa。在 C4 和 C6 情 形下, σ_{yz} 在界面在z = 1.73 m处是间断的,间断值分 别为 2.469 和 2.3791 MPa。

Fig. 14 Variations of the shear stresses along the depth direction (x = 0 and y = 1m)

6 结论

本文采用作者最新提出的横观各向同性层状材料 基本解发展了边界元法,并分析了外力作用下倾斜层 状地基的弹性场。数值验证和算例分析显示本方法具 有较高的计算精度,可以精确地获得层状地基界面上 的应力间断值。算例分析研究了由三种倾斜分层介质 组成的半无限横观各向同性地基,边界上作用矩形均 匀荷载,并与相同荷载作用下各向同性均质和水平层 状横观各向同性地基进行了对比。结果显示,岩土介 质各向异性和倾斜分层对地基弹性场有非常明显的影 响,在地层界面上一些应力分量是间断的,并且出现 拉应力。这些位置很容易出现剪切破坏或张拉破坏。

相对于基于 Kelvin 基本解的传统边界元法,本文 发展的边界元法有如下特点:(1)采用无穷单元考虑 远场的影响,(2)不需要将层状地基分区域分析,减 少了形成的线性方程未知量个数。这样,计算时只需 对加载域及其邻近区域进行离散,大大减少了计算工 作量。此外,采用广义最小残差法求解系数矩阵为满 阵的线性方程组,提高了求解的效率。

限于篇幅,算例分析仅仅讨论了正方形加载域上 均匀荷载作用下水平基础地基的弹性场。建议方法能 直接分析任意形状加载域上非均匀荷载引起的非水平 倾斜层状地基的弹性场,进一步发展还可以用于分析 地下工程的开挖。

参考文献:

- [1] 李八信, 张丙印, 于玉贞. 土力学(第3版) [M]. 清华大学 出版社, 2022. (LI Guangxin, ZHANG Bingyin, YU Yuzhen.
 Soil Mechanics (Third edition) [M]. Tsinghua University Press,
 2022. (in Chinese))
- [2] BURMINSTER D M. The general theory of stresses and displacements in layered systems I, II, III[J]. Journal of Applied Physics, 1945, 16: 89-93, 126-127, 296-302.
- [3] CHEN W T. Computation of the stresses and displacements in a layered elastic medium[J]. International Journal of Engineering Science, 1971, 9: 775-800.
- [4] XIAO H T, YUE Z Q. Elastic fields in two joined transversely isotropic media of infinite extent as a result of rectangular loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37: 247-277.
- [5] 朱桂春, 史培新, 王占生. 层状横观各向同性地基变形问题的一个近似解[J]. 岩土工程学报, 2020, 42(4): 790-796.
 (ZHU Guichun, SHI Peixin, WANG Zhanshen. Approximate solution for deformation problems of transversely isotropic multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 790-796. (in Chinese))
- [6] 时刚,高广运,冯世进. 饱和层状地基的薄层法基本解及 其旁轴边界[J]. 岩土工程学报, 2010, 32(5): 664-671. (SHI Gang, GAO Guangyun, FENG Shijing. Basic solution of saturated layered ground by thin layered method and its paraxial boundary[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 664-671. (in Chinese))
- [7] PAN E. Green's functions for geophysics: a review[J]. Reports

on Progress in Physics, 2019, 82: 106801.

- [8] OZAWA Y, MAINA J, MATSUI K. Influence of crossanisotropy material behavior on back-calculation analysis of multi-layered systems[C]. In: 6th International conference on road and airfield pavement technology. Sapporo, Japan; 2008.
- [9] WANG C D, YE Z Q, RUAN Z W. Displacement and stress distribution under a uniform inclined rectangular load on a cross-anisotropic geomaterial[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33: 709-748.
- [10] 艾智勇,杨轲舒. 横观各向同性层状地基上弹性矩形板的参数研究[J]. 岩土工程学报,2016, 38(8): 1444-1446. (AI Zhiyong, YANG Keshu. Parametric study on elastic rectangle plate on transversely isotropic multilayered soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1444-1446. (in Chinese))
- [11] CAI Y C, SANGGHALEH A, PAN E. Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements[J]. Compututres and Geotechnics, 2015, 65: 250-257.
- [12] POULOS H G. Stresses and displacements in an elastic layer underlain by a rough rigid base[J]. Geotechnique, 1967, 17: 378-410.
- [13] CHOW Y K. Vertical deformation of rigid foundations of arbitrary shape on layered soil media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11: 1-15.
- [14] 林皋, 韩泽军, 李建波. 层状地基任意形状刚性基础动力 响应求解[J]. 力学学报, 2012, 44(6): 1016-1027. (LIN Gao, HAN Zejun, LI Jianbo. Solution of the dynamic response of rigid foundation of arbitrary shape on multi-layered soil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1016-1027 (in Chinese))
- [15] 巴振宁, 胡黎明, 梁建文. 层状横观各向同性地基上刚性 条形基础动力刚度系数[J]. 土木工程学报, 2017, 50(9): 67-81. (BA Zhenning, HU Liming, LIAN Jianwen. Dynamic impedance functions of rigid strip foundation on a multilayered transversely isotropic halfspace[J]. China Civil Engineering Journal, 2017, 50(9): 67-81. (in Chinese))
- [16] YUE Z Q, Yin J H. Layered elastic model for analysis of cone penetration testing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23: 829-843.
- [17] 黄茂松, 钟锐, 任青. 层状地基中沉箱加桩复合基础的水 平-摇摆振动[J]. 岩土工程学报, 2012, 34(5): 790-797.

(HUANG Maosong, ZHONG Rui, REN Qing. Lateral vibration of caisson-pile composite foundation in layered soils[J]. Chinese Journal of Geotechnical Engineering, 2012, **34**(5): 790-797. (in Chinese))

- [18] 王志新, 王波, 李昊, 付艳斌, 温俊昇. 飞机荷载引起的 层状地基附加应力及对下穿隧道的影响范围的研究[J]. 土 木工程学报, 2020, 53(S1): 258-264. (WANG Zhixin, WANG BO, LI Hao, FU YANbin WEN Junsheng. The additional stress of layered foundation caused by aircraft load and its influence scope on the underpass tunnel[J]. China Civil Engineering Journal, 2020, 53(S1): 258-264. (in Chinese))
- [19] SELVADURAI A P S. The analytical method in geomechanics[J]. ASME Applied Mechanics Reviews, 2007, 60: 87-106.
- [20] XIAO S, YUE Z Q. Elastic response of transversely isotropic and non-homogeneous geomaterials under circular ring concentrated and axisymmetric distributed loads[J]. Engineering Analysis with Boundary Elements, 2024, 158: 385-404.
- [21] XIAO S, DU X L, YUE Z Q. Axisymmetric elastic field in layered non-homogeneous and transversely isotropic geomaterials due to surface traction[J]. Computers and Geotechnics, 2023, 155:105226.
- [22] ALMEIDA P O J B, PARREIRA P. Direct evaluation of Cauchy-principal-value integrals in boundary elements for infinite and semi-infinite three dimensional domains[J]. Engineering Analysis with Boundary Elements, 1994, 13(4): 313-320.
- [23] MOSER W, DUENSER C, BEER G. Mapped infinite elements for 3D multi-region boundary element analysis[J]. International Journal for Numerical Methods in Engineering, 2004, 61(3): 317-328.
- [24] XIAO S, YUE Z Q, XIAO H T. Boundary element analysis of elastic fields in non-horizontally layered halfspace whose horizontal boundary subject to tractions[J]. Engineering Analysis with Boundary Elements, 2018, 95: 105-123.
- [25] XIAO S, YUE Z Q. Complete solutions for elastic fields induced by point load vector in functionally graded material model with transverse isotropy[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 411-430.