• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
徐前卫, 马静, 朱合华, 丁文其, 金方方, 明娟. 软弱破碎隧道围岩开挖面稳定性的拟三维模型试验研究[J]. 岩土工程学报, 2011, 33(zk1): 465-470.
引用本文: 徐前卫, 马静, 朱合华, 丁文其, 金方方, 明娟. 软弱破碎隧道围岩开挖面稳定性的拟三维模型试验研究[J]. 岩土工程学报, 2011, 33(zk1): 465-470.
XU Qian-wei, MA Jing, ZHU He-hua, DING Wen-qi, JIN Fang-fang, MING Juan. Pseudo-three-dimensional experimental study on tunnel face stability in weak and fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 465-470.
Citation: XU Qian-wei, MA Jing, ZHU He-hua, DING Wen-qi, JIN Fang-fang, MING Juan. Pseudo-three-dimensional experimental study on tunnel face stability in weak and fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 465-470.

软弱破碎隧道围岩开挖面稳定性的拟三维模型试验研究

Pseudo-three-dimensional experimental study on tunnel face stability in weak and fractured rock mass

  • 摘要: 在软弱破碎围岩中进行隧道开挖,往往因岩体应力过大或围岩过分变形而导致开挖面失稳破坏,并引发隧道塌方事故。本文以Ⅳ类破碎围岩为参照对象,首先将其等效为单一均值地层,随后利用相似模型材料对隧道地层进行模拟,并在不同加载模式下再现隧道开挖,研究了开挖面的破坏模式及其渐进破坏特征。结果表明,在缓慢加载模式下,开挖面呈穹顶式塌方,而在快速加载模式下,开挖面呈通天型塌方;隧道开挖后的初期,开挖面上部范围岩体的侧向位移较大,而在后期底部岩体侧向位移迅速增大,并最终形成自下而上的破坏面;隧道开挖后,开挖面前方岩体水平向应力增量最大值位于开挖面上部但靠近隧道中线的位置,而竖向应力增量最大值则始终位于开挖面轮廓的顶部。

     

    Abstract: Tunnelling in weak and fractured rock mass will inevitably induce excessive stress or deformation of surrounding rock, which results in tunnel face collapse accidents. In order to understand the failure modes and progressive failure characteristics, the weak and fractured rock mass of grade Ⅳ according to Chinese codes is taken as the reference prototype. This rock mass is firstly equivalent for isotropic continual stratum, and then modeled by similar materials. Subsequently, model tests are carried out to simulate tunnel excavation under different loading modes. The test results show that, the tunnel face collapses in dome-style in the slow loading mode, while in the fast loading mode, it collapses in chimney shape and reaches ground surface. In the initial stage after excavation, the lateral displacement at the upside of tunnel face is relatively large; with the increase of overlying loads, the lateral displacement at the downside of tunnel face grows drastically and forms the final failure face from bottom to top. After tunnel excavation, the position of the maximal horizontal stress increment locats at the upside of tunnel face near the line center, but the location of maximal vertical stress increment lies in the top of tunnel face profile.

     

/

返回文章
返回