• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
杨帅, 贾敏才. 移动荷载作用下层状横观各向同性饱和土中排桩的隔振效应[J]. 岩土工程学报. DOI: 10.11779/CJGE20230514
引用本文: 杨帅, 贾敏才. 移动荷载作用下层状横观各向同性饱和土中排桩的隔振效应[J]. 岩土工程学报. DOI: 10.11779/CJGE20230514
Vibration isolation effect of pile barriers in layered saturated transversely isotropic foundations under moving loads[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230514
Citation: Vibration isolation effect of pile barriers in layered saturated transversely isotropic foundations under moving loads[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230514

移动荷载作用下层状横观各向同性饱和土中排桩的隔振效应

Vibration isolation effect of pile barriers in layered saturated transversely isotropic foundations under moving loads

  • 摘要: 利用有限元-边界元耦合法评估了移动荷载下层状横观各向同性饱和土体中排桩的隔振效果。利用有限元法将排桩离散成单桩以及桩单元,基于Bernoulli–Euler梁理论得到桩的有限元矩阵方程;在桩-土边界,土体单元与桩单元进行了等节点离散,并以层状饱和地基的解析层元基本解作为核函数,利用边界积分法得到桩-土界面处地基的柔度矩阵;基于两阶段理论,将侧摩阻力响应与移动荷载直接引起的振动进行耦合,结合边界元法得到饱和地基的边界元方程;考虑Bernoulli–Euler梁和土体之间不发生相对滑移和脱开的位移协调条件,耦合有限元和边界元方程,得到排桩的动力响应方程;计算有无排桩隔振下某一观测点的位移,即可结合隔振理论分析排桩的隔振效率。在验证所提方法准确性的基础上,分析了桩长、桩身刚度、移动荷载速度以及横观各向同性参数对排桩隔振效应的影响。结果表明:最优桩长约等于2倍瑞利波长,超过该值隔振效果提高不大;桩与地基的刚度差越大,隔振效果越好;荷载速度超过剪切波速,桩基隔振表现反而更好。

     

    Abstract: Vibration isolation effect of pile rows in saturated layered transversely isotropic soils due to moving loads is evaluated using a finite-element-boundary-element coupled method. The finite element matrix equations of the pile are obtained based on Bernoulli-Euler beam theory by discretizing the pile row into single piles and pile units using the finite element method. At the pile-soil boundary, the soil unit and the pile unit are discretized with equal nodes, and the analytical layer-element basic solution of the layered transversely isotropic saturated foundation consolidation problem is used as the kernel function to obtain the flexibility matrix using the boundary integral method. Further, based on the two-stage theory, the influence of lateral friction resistance and the vibration directly caused by the moving load are coupled, and the boundary element equations of the saturated foundation are obtained by combining the boundary element method. The displacement coordination condition of no relative slip and dislocation between the Bernoulli-Euler beam and the soils is used to couple the finite element and boundary element equations, and the dynamic response equation of the pile row is obtained. Then, the displacement of an observation point after the pile row without and with the pile vibration isolation is calculated separately, and the vibration isolation efficiency is obtained by combining with the vibration isolation theory. The accuracy of the proposed analytical method is verified by comparing with the existing numerical results, and the effects of the moving load velocity and different pile materials on the pile vibration isolation effect are analyzed. The results show that two times the Rayleigh wavelength is the optimal pile length, and the vibration isolation effect will not improve greatly beyond the critical value; the greater the difference in stiffness between the pile and foundation, the better the vibration isolation effect; the load speed exceeds the shear wave speed, the pile vibration isolation performance is better instead.

     

/

返回文章
返回