• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
周龙, 朱合华, 沈奕, 闫治国, 官林星. 内水压盾构隧道管片衬砌受力与变形特性分析[J]. 岩土工程学报, 2023, 45(9): 1763-1772. DOI: 10.11779/CJGE20220761
引用本文: 周龙, 朱合华, 沈奕, 闫治国, 官林星. 内水压盾构隧道管片衬砌受力与变形特性分析[J]. 岩土工程学报, 2023, 45(9): 1763-1772. DOI: 10.11779/CJGE20220761
ZHOU Long, ZHU Hehua, SHEN Yi, YAN Zhiguo, GUAN Linxing. Stress and deformation properties of shield segmental linings under internal water pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1763-1772. DOI: 10.11779/CJGE20220761
Citation: ZHOU Long, ZHU Hehua, SHEN Yi, YAN Zhiguo, GUAN Linxing. Stress and deformation properties of shield segmental linings under internal water pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1763-1772. DOI: 10.11779/CJGE20220761

内水压盾构隧道管片衬砌受力与变形特性分析

Stress and deformation properties of shield segmental linings under internal water pressures

  • 摘要: 对不同埋深的通缝和错缝拼装盾构衬砌结构在内水压作用下的力学响应开展研究,分析了内水压、隧道埋深和衬砌拼装方式对盾构衬砌承载特性的影响规律。研究结果表明,隧道内水从空管变化至满管过程中,衬砌环变形持续增大,内力变化呈现三阶段特性。第一阶段为空管至半管阶段,衬砌环弯矩增大、轴力减小,但二者的变化幅度极小。第二阶段为半管至刚刚满管阶段,衬砌环弯矩增大、轴力减小,轴力的变化幅度小于弯矩。第三阶段为满管后内压增加阶段,衬砌环弯矩和轴力同时减小,但轴力的减幅远大于弯矩。对于有内压作用的盾构衬砌,埋深减小时衬砌结构的内力与变形会随之减小,但局部接缝张开及螺栓应力可能出现增大的现象,较浅覆土处衬砌环接缝的安全储备应引起足够重视。当隧道埋深及内部水压荷载相同时,错缝拼装衬砌结构的收敛变形、局部接缝变形和接缝部位螺栓的受力均优于通缝拼装结构,承受内水压的盾构衬砌可优先考虑采用错缝的方式拼装。

     

    Abstract: The mechanical responses of continuous- and stagger-jointed shield lining structures with different buried depths and internal water pressures are investigated, and then the influences of the internal pressure, buried depth and lining assembly manner on the stress and deformation properties of shield segmental linings are analyzed. The results show that the deformations of the shield lining rings increase, and the change of the internal forces presents the characteristic of three stages in the process of inner water inside the tunnel from the empty pipe state to the full one. The first stage is from the empty pipe state to the half one, in which the bending moments and axial forces of the lining rings increase and decrease, respectively, but the change ranges of the bending moments and axial forces are very small. The second stage is from the half pipe state to the full one, in which the bending moments and axial forces of the lining rings increase and decrease, respectively, and the change range of the axial forces is less than that of the bending moments. The third stage is the increase of the internal pressures after the pipe is full, in which the bending moments and axial forces of the lining rings decrease at the same time, but the reduction of the axial forces is much greater than that of the bending moments. The internal forces and deformations of the lining structures reduce with the decrease of the buried depth, but the local joint opening and bolt stress may increase in the shield segmental linings under the internal water pressure. Thus, enough attention should be paid to the safety reserve of the joints in the linings with shallow buried depth. In addition, under the same buried depth at tunnel top and internal water pressure inside the tunnel, the convergence deformation, local joint opening and stress of the bolts at the joint positions of the staggered-jointed lining structures are better than those of the continuous-jointed ones, which means the staggered-jointed assembly manner should be preferred for the shield linings under the internal water pressures.

     

/

返回文章
返回