• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391-1398. DOI: 10.11779/CJGE202108003
引用本文: 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391-1398. DOI: 10.11779/CJGE202108003
JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. DOI: 10.11779/CJGE202108003
Citation: JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. DOI: 10.11779/CJGE202108003

一种实用型深海能源土多场耦合离散元数值方法

A practical multi-field coupling distinct element method for methane hydrate bearing sediments

  • 摘要: 水合物储量丰富且污染小,是全球关注的未来绿色能源。而水合物的大规模开采将致使水合物沉积物(即能源土)力学性质劣化,从而引发出砂、海底滑坡等工程和地质灾害,制约水合物的安全高效开采。针对目前大多数多场耦合分析框架无法准确描述颗粒运移等大变形问题,基于离散元商业计算软件Particle Flow Code (PFC)和含水合物多孔介质的多相流分析程序TOUGH+HYDRATE (T+H),构建了一种实用型水合物开采多场耦合分析框架T+H+PFC。通过将力学计算模块PFC所得孔隙率参数和T+H计算所得温度、压力、盐浓度信息交换、更新,实现了T+H与PFC的耦合计算。然后,通过一维固结和一维热传导试验验证了该耦合程序的有效性。最后,模拟分析了一维降压、升温开采下能源土动态响应的与水合物弱化过程。结果表明,耦合模拟与试验结果较为吻合,T+H+PFC在多场耦合下水合物开采引起的地层变形、出砂、海底滑坡等问题分析中具有良好的应用前景。

     

    Abstract: The methane hydrate (MH) has been attracting extensive attention as a promising green energy source because of the abundant reserve and more environmental friendliness. However, large-scale exploitation induces the weakening of MH bearing sediments (MHBS) structure, which can result in engineering problems such as sand jamming, and environmental disasters such as landslide, and this will constrain efficient and safe exploitation of MH. Given that several multi-field coupling simulators fail to accurately describe large deformation of soils such as particle migration, a practical multi-field method T+H+PFC for MH exploitation analysis is established based on the commercial distinct element method (DEM), software particle flow code (PFC) and numerical code TOUGH+HYDRATE (T+H) for the multiphase flow analysis of hydrate-bearing geologic systems. The coupling computation can be achieved by exchanging the information between the porosity obtained by DEM and the temperature, pressure and salinity obtained by T+H. Then, the method is validated by conducting numerical modeling of one-dimensional (1D) consolidation and 1D heat conduction tests. Finally, focus is on the dynamic responses of MHBS and weakening of MH under the conditions of 1D dissociation tests with depressurization and heat stimulating methods. The numerical results are found to be in good agreement with the experimental data available, which demonstrates that the T+H+PFC method has a great promise in the MH decomposition-induced multi-field coupling analysis, such as deformation of seabed, sand production and submarine landslide.

     

/

返回文章
返回