• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

大气氧化致诱黏性土土性异变现象及其机理

张先伟, 孔令伟

张先伟, 孔令伟. 大气氧化致诱黏性土土性异变现象及其机理[J]. 岩土工程学报, 2013, 35(12): 2192-2202.
引用本文: 张先伟, 孔令伟. 大气氧化致诱黏性土土性异变现象及其机理[J]. 岩土工程学报, 2013, 35(12): 2192-2202.
ZHANG Xian-wei, KONG Ling-wei. Effect of atmospheric oxidation on variation of physical-mechanical properties of clay and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2192-2202.
Citation: ZHANG Xian-wei, KONG Ling-wei. Effect of atmospheric oxidation on variation of physical-mechanical properties of clay and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2192-2202.

大气氧化致诱黏性土土性异变现象及其机理  English Version

基金项目: 国家自然科学基金项目(41102200,51179186)
详细信息
    作者简介:

    张先伟(1982-),男,黑龙江龙江人,博士,助理研究员,从事特殊土的力学特性研究。E-mail:xwzhang@whrsm.ac.cn。

  • 中图分类号: TU441.2

Effect of atmospheric oxidation on variation of physical-mechanical properties of clay and its mechanism

  • 摘要: 关注了常温、常压、常态的大气环境下黏性土土性发生缓慢异变现象。以湛江黏土为研究对象,在大气氧化影响下,土色由青灰色、绿灰色变为淡黄棕、黄棕色;颗粒团聚程度增强,塑性、膨胀性、收缩性、灵敏性、结构屈服强度皆有所降低。大气氧化对土性改造使其力学性质有所强化,但因结构强度的减损对其力学稳定性的影响是长期的,且潜在危害较大。通过建立结构概化模型讨论了大气氧化致诱黏性土土性异变机理,大气环境诱发氧化还原环境变化,水-土-大气间的化学反应与运动影响颗粒间作用力改变,导致结构单元体联结形式更改进而重塑微观结构形态,控制土体的稳定性状态。氧化反应促使土中铁离子的化合价升高,在浓度梯度与土颗粒表面吸附能的作用下发生迁移并伴随着胶体态氧化铁的老化反应向晶质态发展,由#x0201c;混铁#x0201d;变为#x0201c;包铁#x0201d;为主的存在形式,微观结构变为低塑性的、物理接触的、弱结构强度的散凝结构。该研究可为因环境变化引起的地质灾害、工程灾害的预防、控制和治理提供了一定的理论支持。
    Abstract: The slow variability of the physical-mechanical properties of clay in atmospheric environment with normal temperature, pressure and concentration is studied. By taking the Zhanjiang clay as the research object, the soil color of atmospheric environment changes from blue-gray, green-gray into yellowish brown, brown under impact, and the degree of particle agglomeration is enhanced. Further, the plasticity and expansibility, shrinkage, sensitivity, structural yield pressure are all reduced. Owing to the atmospheric oxidation, the mechanical properties of the clay is strengthened, but its long-term mechanical stability is depressed and the damage is potential since the structural strength is weakened. A generalized structural model for the variability of clay by atmospheric oxidation is established and discussed. The results show that the variation of atmospheric environment leads to change of redox environment, the chemical reaction among water-soil and atmosphere is carried out and moved, and the connection ways of micro-fabric unit are changed. Furthermore, the microstructure is transformed and the stability of mechanical system is affected. Oxidation reaction prompts the valence of the iron ions in the soil to increase, and they migrate along with the aging reaction of colloidal iron oxide to the crystalline state under the concentration gradient and the adsorption energy of soil particle surface. Iron oxide exists in the form of the mixed iron replaced by the coated iron one, and the microstructure becomes flocculation structure with low plasticity, physical contact and weak structural strength. This study may provide a theoretical support for the prevention and control of geological and engineering disasters owing to environmental change.
  • [1] BLIGHT G E. Interaction between the atmosphere and the earth[J]. G#x000e9;otechnique, 1997, 47(4): 715-767.
    [2] BJERRUM L. Progressive failure in slopes of overconsolidated plastic clay and clay shales[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93(SMS): 3-49.
    [3] CHANDLER R J, APTED J P. The effect of weathering on the strength of London Clay[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1988, 21: 59-68.
    [4] CHANDLER R J. Lias clay: Weathering processes and their effect on shear strength[J]. G#x000e9;otechnique, 1972, 22(3): 403-431.
    [5] CHANDLER R J. Clay sediments in depositional basins: the geotechnical cycle[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33: 7-39.
    [6] CAFARO F, COTECCHIA F. Structure degradation and changes in the mechanical behaviour of a stiff clay due to weathering[J]. G#x000e9;otechnique, 2001, 51(5): 441-453.
    [7] COOPER M R, BROMHEAD E N, PETLEY D J, et al. The selborne cutting stability experiment[J]. G#x000e9;otechnique, 1998, 48(1): 83-101.
    [8] SL237#x02014;1999土工试验规程[S]. 1999. (SL237#x02014;1999 Standard for soil test method[S]. 1999. (in Chinese))
    [9] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. (ZHANG Gan-lin, GONG Zi-tong. Soil survey laboratory methods[M]. Beijing: China Science Press, 2012. (in Chinese))
    [10] 李酉开. 土壤农业化学常规分析方法[M]. 北京: 科学出版社, 1984: 144-147. (LI You-kai. Routine analysis methods for soil agricultural chemistry[M]. Beijing: Science Press, 1984: 144-147. (in Chinese))
    [11] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 44-58. (LU Ru-kun. Analysis of soil agricultural chemistry[M]. Beijing: China Agriculture Science and Technology Press, 1999: 44-58. (in Chinese))
    [12] BURLAND J B. On the compressibility and shear strength of natural clays[J]. G#x000e9;otechnique, 1990, 40(3): 329-378.
    [13] LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. G#x000e9;otechnique, 1990, 40(3): 467-488.
    [14] 张信贵, 吴 恒, 易念平. 城市区域水土作用与土细观结构变异的试验研究[J]. 广西大学学报(自然科学版), 2004, 29(1): 39-43. (ZHANG Xin-gui, WU Heng, YI Nian-ping. Experiment study to City area water-soil interaction and soil structural change[J]. Journal of Guangxi University (Nature Science Edition), 2004, 29(1): 39-43. (in Chinese))
    [15] 李学刚, 吕晓霞, 孙云明, 等. 渤海沉积物中的#x0201c;活性铁#x0201d;与其氧化还原环境的关系[J]. 海洋环境科学, 2003, 22(1): 20-24. (LI Xue-gang, L#x000dc; Xiao-xia, SUN Yun-ming, et al. Relation of active iron and redox environments in the sediments of Bohai Sea[J]. Marine Environmental Science, 2003, 22(1): 20-24. (in Chinese))
    [16] 张际标, 谢 群, 施玉珍, 等. 湛江港湾表层沉积物的氧化还原特征及其影响因素[J]. 海洋环境科学, 2011, 30(6): 823-826. (ZHANG Ji-biao, XIE Qun, SHI Yu-zhen, et al. Redox traits and its influence factors in surface sediments in Zhanjiang Harbor[J]. Marine Environmental Science, 2011, 30(6): 823-826. (in Chinese))
    [17] 谭罗荣, 张梅英. 一种特殊土的微观结构特性的研究[J]. 岩土工程学报, 1982, 4(2): 26-35. (TAN Luo-rong, ZHANG Mei-ying. The research on microscopic structure properties of a particular soil[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(2): 26-35. (in Chinese))
    [18] 孔令伟, 罗鸿禧. 游离氧化铁形态转化对红黏土工程性质的影响[J]. 岩土力学, 1994, 14(4): 25-39. (KONG Ling-wei, LUO Hong-xi. Effect of the conversion in form of free iron oxide on the engineering property of the red clay[J]. Rock and Soil Mechanics, 1994, 14(4): 25-39. (in Chinese))
    [19] 冯金良, 赵泽三, 高国瑞. 无定形态游离氧化铁脱水老化对黏性土物理性质的影响[J]. 工程地质学报, 1993, 1(2): 85-92. (FENG Jin-liang, ZHAO Ze-san, GAO Guo-rui. The effect of amorphous free ferric oxide on the physical properpties of clay soil in the process of dehydration[J]. Journal of Engineering Geology, 1993, 1(2): 85-92. (in Chinese))
    [20] 邵光辉, 刘松玉. 连云港海相黏土的沉积化学及其对土基本性质的影响[J]. 工程地质学报, 2006, 14(增刊): 86-91. (SHAO Guang-hui, LIU Song-yu. The influence of depositional chemistry on geotechnical properties of Lianyugang marine clays[J]. Journal of Engineering Geology, 2006, 14(S0): 86-91. (in Chinese))
    [21] 冯铭璋. 上海地区#x0201c;褐黄色表土层#x0201d;的某些特征及其鉴别[J].上海地质, 1982(2): 37. (FENG Ming-zhang. Some characteristics and identification of #x0201c;the brown yellow topsoil#x0201d; in Shanghai area[J]. Shanghai Geology, 1982(2): 37. (in Chinese))
    [22] OHTSUBO M, EGASHIRA K, KASHIMA K. Depositional and post- depositional geochemistry, and its correlation with the geotechnical properties of marine clays in Ariake Bay, Japan[J]. G#x000e9;otechnique, 1995, 45(3): 509-523.
    [23] JAMES K M, SANTAMARINA J C. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1222-1233.
    [24] WEBSTER J G, SWEDLUND P J, WEBSTER K S. Trace metal adsorption onto an acid mine drainage iron ( III ) oxy hydroxy sulfate[J]. Environmental Science and Technology, 1998, 32(10): 1361-1368.
计量
  • 文章访问数:  359
  • HTML全文浏览量:  0
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-21
  • 发布日期:  2013-11-30

目录

    /

    返回文章
    返回