• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

现场泥水劈裂试验及应用研究

刘学彦, 袁大军, 郭小红

刘学彦, 袁大军, 郭小红. 现场泥水劈裂试验及应用研究[J]. 岩土工程学报, 2013, 35(10): 1901-1907.
引用本文: 刘学彦, 袁大军, 郭小红. 现场泥水劈裂试验及应用研究[J]. 岩土工程学报, 2013, 35(10): 1901-1907.
LIU Xue-yan, YUAN Da-jun, GUO Xiao-hong. Test and application of in-situ slurry fracturing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1901-1907.
Citation: LIU Xue-yan, YUAN Da-jun, GUO Xiao-hong. Test and application of in-situ slurry fracturing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1901-1907.

现场泥水劈裂试验及应用研究  English Version

基金项目: 国家自然科学基金项目(50878015,51178027)
详细信息
    作者简介:

    刘学彦(1985- ),男,河南汝南人,博士研究生,主要从事泥水盾构隧道和掘进土力学方面的研究工作。E-mail: happyhome-liu@163.com。

    通讯作者:

    袁大军

  • 中图分类号: TU47

Test and application of in-situ slurry fracturing

  • 摘要: 采用泥水平衡盾构进行过江越海隧道施工时,重要的技术难点就是特殊小覆土区间盾构掘进保证开挖面稳定以及防止泥水劈裂的发生。对于泥水劈裂现象的室内试验研究,有一定的基础资料。但是,由于尺寸和边界条件限制,使其研究成果不能直接应用到工程中去。在理论分析的基础上,研制了现场泥水劈裂仪,确定了劈裂试验的具体实施步骤和劈裂压力的断定方法。并在南京某在建过江隧道工程中进行了现场劈裂试验。(1)试验结果表明:由于劈裂过程为突变过程,采用总应力法时,地层劈裂模型能很好的预测地层劈裂压力,也更符合实际工况;由理论分析得出,掘进模式模型的地层劈裂压力更小,几乎与地层静止侧向土压力相当;增加泥水黏度能够增加地层劈裂压力,但增加量有限。(2)运用现场劈裂试验结果给出了防止泥水劈裂的泥水压力设定上限值,并运用盾构机在始发不远处进行了原位泥水劈裂试验,在一定程度上验证了预测模型的准确性。
    Abstract: For constructing slurry shield tunnels under rivers or seas, it's a difficult technical problem to maintain the stability of the excavation face while preventing slurry fracturing. There are some laboratory investigations of slurry fracturing. But, due to small sizes and different boundary conditions, the results cannot be directly applied to the projects. In-situ slurry fracturing instrument is developed on the basis of theoretical analysis, and the test procedures of fracturing and the relevant method of confirming fracturing pressure are introduced. The in-situ slurry fracturing test is carried out on the rive-crossing tunnel under construction in Nanjing. The results indicate that: (1) as the fracturing process is a mutation process, the stratum fracturing model can predict fracturing pressure by means of the total stress method, which agrees with actual working condition. The theoretical results show that the fracturing pressure of tunneling model, which is almost equal to the lateral earth pressure, is smaller than that of the in-situ slurry fracturing test. It's efficient to increase fracturing pressure by increasing the slurry viscosity, however, the effect is limited; and (2) the upper limit value of slurry pressure set for preventing slurry fracturing is given according to the results of the in-situ slurry fracturing test. The in-situ slurry fracturing test is performed by shield machine after originating, and it may verify the accuracy of the prediction model to some extent.
  • [1] 袁大军, 刘学彦. 南京纬三路过江通道工程合理覆土厚度研究[R]. 北京: 北京交通大学, 2013. (YUAN Da-jun, LIU Xue-yan. Research on rational buried depth of shield tunnel at Weisan Road under Yangtze River in Nanjing of China[R]. Beijing: Beijing Jiaotong University; 2013. (in Chinese))
    [2] 蒋树屏, 刘元雪, 谢 锋, 等. 重庆市朝天门两江隧道越江段盾构法合理覆盖层厚度研究[J]. 岩石力学与工程学报, 2007, 26(6): 1188-1193. (JIANG Shu-ping, LIU Yuan-xue, XIE Feng, et al. Study on reasonable cover thickness for submarine tunnel of Chaotianmen in Chongqing by shield construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1188-1193. (in Chinese))
    [3] MORI A, TAMURA M. Hydrofracturing pressure of cohesive soils[J]. Soils and Foundations, 1987, 27(1): 14-22.
    [4] MORI A, TAMURA M, FUKUI Y. Fracturing pressure of soil ground by viscous materials[J]. Soils and Foundations, 1990, 30(3): 129-136.
    [5] PANAH A K, YANAGISAWA E. Laboratory studies on hydraulic fracturing criteria in soil[J]. Soils and Foundations, 1989, 29(4): 14-22.
    [6] BEZUIJEN A, SANDERS MPM, HAMER D D, et al. Laboratory tests on compensation grouting, the influence of grout bleeding[C]// Underground Space-the 4th Dimension of Metropolises. Taylor & Francis, London, Britain, 2007: 395-401.
    [7] GAFAR K, SOGA K, BEZUIJEN A, et al. Fracturing of sand in compensation grouting[C]// Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the 6th International Symposium (Is-Shanghai), Shanghai, China, 2008. CRC Press Ltd, 2009: 281-286.
    [8] MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments, Part 1. Methods and observations[J]. Géotechnique, 1992 43(2): 255-265.
    [9] MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments, Part 2. Propagation[J]. Géotechnique, 1993, 43(2): 267-276.
    [10] MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments, Part 3. Theoretion[J]. Géotechnique, 1993, 43(2): 277-287.
    [11] 袁大军, 黄清飞, 李兴高, 等. 盾构掘进黏土地层泥水劈裂伸展现象研究[J]. 岩土工程学报, 2010, 32(5): 712-716. (YUAN Da-jun, HUANG Qing-fei, LI Xing-gao, et al. Hydraulic fracture extending during slurry shield tunneling in cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 712-716. (in Chinese))
    [12] 袁大军, 黄清飞, 小泉淳, 等. 水底盾构掘进泥水喷发现象研究[J]. 岩石力学与工程学报, 2007, 26(11): 2296-2301. (YUAN Da-jun, HUANG Qing-fei, KOIZUMI Atsushi, et al. Study on slurry water gushing during underwater shield[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2296-2301. (in Chinese))
计量
  • 文章访问数:  284
  • HTML全文浏览量:  2
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-23
  • 发布日期:  2013-10-19

目录

    /

    返回文章
    返回