• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

理想胶结砂土力学特性及剪切带形成的离散元分析

蒋明镜, 张望城, 孙渝刚, 张伏光

蒋明镜, 张望城, 孙渝刚, 张伏光. 理想胶结砂土力学特性及剪切带形成的离散元分析[J]. 岩土工程学报, 2012, 34(12): 2162-2169.
引用本文: 蒋明镜, 张望城, 孙渝刚, 张伏光. 理想胶结砂土力学特性及剪切带形成的离散元分析[J]. 岩土工程学报, 2012, 34(12): 2162-2169.
JIANG Ming-jing, ZHANG Wang-cheng, SUN Yu-gang, ZHANG Fu-guang. Mechanical behavior and shear band formation in idealized cemented sands by DEM[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2162-2169.
Citation: JIANG Ming-jing, ZHANG Wang-cheng, SUN Yu-gang, ZHANG Fu-guang. Mechanical behavior and shear band formation in idealized cemented sands by DEM[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2162-2169.

理想胶结砂土力学特性及剪切带形成的离散元分析  English Version

基金项目: 国家杰出青年基金项目(51025932);国家自然科学基金项目(10972158);教育部博士点基金项目(20100072110048);长江学者和创新团队发展计划项目(IRT1029)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU411

Mechanical behavior and shear band formation in idealized cemented sands by DEM

  • 摘要: 根据近期胶结铝棒接触力学特性的实测结果,提炼出用于模拟胶结砂土粒间胶结作用的胶结接触模型,并将该模型引入二维离散元商业软件PFC2D。通过对不同胶结强度和不同围压下胶结砂土的平面应变双轴压缩试验的离散元模拟,分析了理想胶结砂土的宏观力学特性及其剪切带的形成规律。结果表明:相比同一孔隙比的无胶结试样,胶结试样具有更高的峰值强度、显著的应变软化和剪胀现象以及明显的剪切带,宏观力学特性与其胶结接触微观力学机理密切相关,模拟结果与已有室内试验结果具有规律上的一致性;由胶结试样内部的微观信息统计可知,胶结试样剪切带的形成一般在其峰值强度之后,且剪切带的形成是试样变形、胶结破坏、孔隙比、平均纯转动率和位移场等微观参量局部化的综合表现。
    Abstract: Focus is placed on the mechanical behavior and shear band formation in idealized cemented sands by a series of DEM biaxial compression tests involving different bond strengths and confining pressures. The DEM software PFC2D is applied with user-defined contact model, which is resulted from the mechanical tests on the bonded granules idealized by two glued aluminum rods. The results show that the cemented sands have a higher strength and more significant post-peak softening and dilatancy than the reconstituted sands, and that the simulation is consistent with the laboratory tests and closely associated with the micro bonded contact mechanism. In addition, the shear bands in the cemented sands form with the simultaneous localization of micro parameters, such as deformed specimens, void ratio, averaged pure rotation rate (APR), displacement field and distribution of bond breakage.
  • [1] WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Can Geotech J, 2008,45:29-44
    [2] YU H S, TAN S M, SCHNAID F. A critical state framework for modelling bonded geomaterials[J]. Geomech Geoengng, 2007,2(1):61-74
    [3] YAN W M, LI X S. A model for natural soil with bonds[J]. Géotechnique, 2011,61(2):95-106
    [4] VARDOULAKIS I, SULEM J. Bifurcation analysis in geomechanics[M]. London: Blackie, 1995.
    [5] VIGGIANI G, LENOIR N, BESUELLE P,et al. X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression[J]. C R Mecanique, 2004,332:819-826
    [6] UTILI S, NOVA R. DEM analysis of bonded granular geomaterials[J]. Int J Numer Anal Meth Geomech, 2008,32:1997-2031
    [7] JIANG M J, YAN H B, ZHU H H,et al. Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses[J]. Computers and Geotechnics, 2011,38(1):14-29
    [8] CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979,29:47-65
    [9] 蒋明镜,孙渝刚,李立青. 复杂应力下两种胶结颗粒微观力学模型的试验研究[J]. 岩土工程学报, 2011,33(3):354-360
    JIANG Ming-jing, SUN Yu-gang, LI Li-qing. Experimental study on micro-mechanical model for two different bonded granules under complex stress conditions[J]. Chinese Jounal of Geotechnical Engineering, 2011,33(3):354-360. (in Chinese))
    [10] 蒋明镜,孙渝刚,李立青. 胶结颗粒微观接触本构的试验装置研究[J]. 岩土力学, 2011,32(1):309-315
    JIANG Ming-jing, SUN Yu-gang, LI Li-qing. Development of experimental apparatus for contact behaviour of bonded granules[J]. Rock and Soil Mechanics, 2011,32(1):309-315. (in Chinese))
    [11] 蒋明镜,孙渝刚. 人工胶结砂土力学特性的离散元模拟[J]. 岩土力学, 2011,32(6):1849-1856
    JIANG M Ming-jing, SUN Yu-gang. DEM modelling of mechanical behaviour of artificially cemented sand[J]. Rock and Soil Mechanics, 2011,32(6):1849-1856. (in Chinese))
    [12] 蒋明镜,朱方园,刘 芳. 两种常用本构模型在基坑开挖数值模拟中的适用性[J]. 河海大学学报自然科学版, 2012,40(5):568-575
    JIANG M Ming-jing, ZHU Fang-yuan, LIU Fang. Applicability of two constitutive models for simulating foundation excavation[J]. Journal of Hohai University (Natural Sciences), 2012,40(5):568-575. (in Chinese))
    [13] JIANG M J, KONRAD, J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003,30(7):579-597
    [14] 沈珠江. 理论土力学[M]. 北京:中国水利水电出版社,2000: 291. (SHEN Zhu-jiang. Theoretical soil mechanics[M]. Beijing: China Water Power Press, 2000:291. (in Chinese))
    [15] SCHOFIELD A N. Disturbed soil properties and geotechnical design[M]. London: Thomas Telford, 2005.
    [16] JIANG M J, YU H S, HARRIS D. Discrete element modeling of deep penetration in granular soils[J]. Journal for Numerical and Analytical Methods in Geomechanics, 2006,30(4):335-361
计量
  • 文章访问数:  997
  • HTML全文浏览量:  6
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-01
  • 发布日期:  2012-12-24

目录

    /

    返回文章
    返回