• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李相崧. 饱和土弹塑性理论的数理基础——纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33.
引用本文: 李相崧. 饱和土弹塑性理论的数理基础——纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33.
LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soils —In memory of Professor HUANG Wen-xi[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33.
Citation: LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soils —In memory of Professor HUANG Wen-xi[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33.

饱和土弹塑性理论的数理基础——纪念黄文熙教授

Physical and mathematical bases of elastoplastic theories on saturated soils —In memory of Professor HUANG Wen-xi

  • 摘要: 大量土工问题是具有不规则甚至不确定边界条件的多维问题,面临的荷载不仅限于明确定义的单调荷载,还包括时变与随机往复荷载。而土作为一种天然材料,其力学行为极为复杂。多相性、非均质性、各向异性、非线性、加载路径与历史的影响、压力敏感性、体积变形与剪切变形的强耦合等等均为岩土工程师们通常面临和需要处理的问题。当太沙基在80年前以他的划时代的有效应力原理奠定现代土力学基础时,现代计算技术与相应的基础理论并不存在。因而除个别问题如一维固结问题与渗流问题在适度简化后存在解析解外,大量问题的处理必须基于高度简化的面向问题的集总参数模型。这些模型结合工程师的经验对传统土工结构往往能给出合理的或保守的强度指标,但很少能提高和深化我们对问题的内在认识,而且在面对许多现代新型土工结构时,这些传统方法往往显得力不从心。自20世纪中期以来,在应用力学领域内有着一系列重要发展:多相连续介质理论与塑性本构理论趋于成熟,有限元与差分计算方法已成为通用的偏微分场方程求解器,数字计算设备的能力也已获几何级数的提高。以临界状态理论为标志土力学本身也有着重要发展。这一切发展已有可能将土力学的问题纳入一个统一的理论框架内予以系统的处理,而且事实上许多土力学与岩土工程的研究及分析也已在不同程度上基于这样的一个框架,而其中土的本构模型是一个关键。笔者力图从基本的物理和数学原理出发来勾划出一个土弹塑性本构理论框架,其大部分内容都来自经典文献。为避免不确定性,以太沙基有效应力原理为前提,所以该框架仅对饱和土有效。

     

    Abstract: The physical and mathematical bases of the elastoplastic framework for constitutive modeling of soils are reviewed. Most of the contents are extracted from the existing literatures, but this paper represents an effort of presenting them in a focused manner, aided with explanatory comments. The review starts from the classical thermodynamic laws and the common hypothesis of internal variables, followed by the elastic-plastic decomposition of deformation and the notion of dissipation and locked energy. Then the concepts of the flow potential and the hypothesis of the maximum dissipation rate as well as the notions of yielding function, flow direction and plastic hardening are elucidated. The pressure sensitive elastic modeling is also discussed. Following the conceptual derivation of the basic ingredients of elastoplastic modeling, the issues on objectivity, anisotropic modeling, non-coaxial deformation and the critical state theory are addressed from a perspective of elementary physics and mathematics.

     

/

返回文章
返回