• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
王雨, 刘国彬, 屠传豹. 基于遗传-GRNN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34(suppl): 167-171.
引用本文: 王雨, 刘国彬, 屠传豹. 基于遗传-GRNN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34(suppl): 167-171.
WANG Yu, LIU Guo-bin, TU Chuan-bao. Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 167-171.
Citation: WANG Yu, LIU Guo-bin, TU Chuan-bao. Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 167-171.

基于遗传-GRNN在深基坑地连墙测斜预测中的研究

Deformation prediction for deep excavations based on genetic algorithms-GRNN

  • 摘要: 基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。

     

    Abstract: Affected by various factors, the deep excavation has become one of the key problems in geotechnical engineering. In practice, the deformation must be controlled rigorously according to the actual situation, surrounding environment and building safety grade. The intelligent construction has become one of the tendencies of deep excavation engineering, that is, it is to predict the deformation of retaining structures by neural network by collecting and analyzing monitoring data which record the deformation information. The generalized regression neural network (GRNN) is studied based on the genetic algorithm (GA). In this algorithm, GA is adopted to search the optimal smooth factor which is the only factor of GRNN, and then the GA-GRNN is used for prediction. The simulation experiment indicates that the proposed method is effective in time series prediction.

     

/

返回文章
返回