• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和砂土三轴试验中反压设置与抗剪强度的研究

黄博, 汪清静, 凌道盛, 丁浩, 陈云敏

黄博, 汪清静, 凌道盛, 丁浩, 陈云敏. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313-1319.
引用本文: 黄博, 汪清静, 凌道盛, 丁浩, 陈云敏. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313-1319.
HUANG Bo, WANG Qing-jing, LING Dao-sheng, DING Hao, CHEN Yun-min. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319.
Citation: HUANG Bo, WANG Qing-jing, LING Dao-sheng, DING Hao, CHEN Yun-min. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319.

饱和砂土三轴试验中反压设置与抗剪强度的研究  English Version

基金项目: 地震行业科研专项(200808022);国家自然科学基金项目(50708095,51178427);国家重点基础研究发展计划项目(2007CB714203)
详细信息
    作者简介:

    黄 博(1973– ),女,副教授,主要从事土动力学和实验土力学研究和教学。E-mail: cehuangbo@zju.edu.cn。

  • 中图分类号: TU432

Effects of back pressure on shear strength of saturated sand in triaxial tests

  • 摘要: 为增加试样饱和度而采用反压饱和是室内三轴试验中普遍采用的技术手段,但现行规范对试样中反压取值没有具体规定。通过对福建标准砂的一系列固结不排水和固结排水三轴试验,分析了不同反压、围压下饱和砂土的应力–应变关系、孔压发展规律,并分析了几种常用破坏取值标准下土体强度指标的差异。试验结果表明固结不排水三轴试验中,反压对砂土应力应变关系、孔压发展有明显影响,从而影响强度取值;而在固结排水试验中,施加不同的反压对于砂土抗剪强度则基本无影响。在不排水剪切中,建议反压设为300~500 kPa,且在同一组试样中采用统一的反压对试样进行饱和。在破坏标准上,建议采用最大有效主应力比(σ'1/σ'3)max对应强度作为砂土的不排水抗剪强度;而在考虑土体残余强度时,建议采用超静孔压下降为零为破坏标准。
    Abstract: The back pressure saturation method is commonly adopted in triaxial test s to increase the saturation degree of samples. But the value of the back pressure is not stipulated in Chinese standards nowadays. To investigate the back pressure effects, a series of triaxial tests are carried out on Fujian standard sand. The stress-strain relationship of saturated soils under different back pressures and confining pressures is analyzed, and the development of pore pressure is obtained. The effective friction angle obtained from different failure criteria are also deduced. The test results reveal that the back pressure plays an important role in the undrained shearing behaviors of dilative soils, however, it seems to produce no effect on drained condition. According to the test results, it is suggested that, the back pressure should be 300~500 kPa, and be equal in one series of tests. In undrained shear test the strength corresponding to the maximum effective principal stress ratio (σ'1/σ'3)max is recommended as the maximum undrained shear stength. While the residual stress of soils needs to be considered, Δu=0 (excess pore pressure equal to zero) could be the failure criterion.
  • [1] BLACK D K, LEE K L. Saturating laboratory samples by back pressure[J]. Journal of the Soil Mechanics and Foundations Division, 1973, SM1(99): 75–93 .
    [2] 魏海云, 詹良通, 陈云敏. 高饱和度土的压缩和固结特性及其应用[J]. 岩土工程学报, 2006, 28(2): 267. (WEI Hai-yun, ZHAN Liang-tong, CHEN Yun-min. Compre- ssibility and consolidation of unsaturated soils with high degree of saturation and its application[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 267. (in Chinese))
    [3] 柏丽萍. 三轴试验中孔隙水压力的影响因素及改进方法[J].土工基础, 2007, 21(6): 85. (BAI Li-ping. improved methods and the impact of factors of pore water pressure in the triaxial test[J]. Soil Eng. and Foundation, 2007, 21(6): 85. (in Chinese))
    [4] AHNBERG H. Effects of back pressure and strain rate used in triaxial testing of stabilized organic soils and clays[J]. Geotechnical Testing Journal, 2004, 27(3): 250–259.
    [5] ALLAM M M, SRIDHARAN A. Influence of the back pressure thchnique on the shear strength of soils[J]. Geotechnical Testing Journal, 1980, 3(1): 35–40.
    [6] BRAND E W. Back pressure effects on the undrained strength characteristics of soft clay[J]. Soils and Foundations, 1975, 15(2): 1–16.
    [7] HONG X, TING H. Effects of saturation and back pressure on sand liquefaction[J]. Journal of Geotechnical Engineering, 1991, 9(117): 1347–1362 .
    [8] ROSENGREN K J, JAEGER J C. The mechanical properties of an interlocked low-porosity aggregate[J]. Géotechnique, 1968, 18: 317–326.
    [9] 赖 勇. 砂土常规三轴试验中若干问题的探讨[J]. 地基处理,2004, 15(3): 60–64. (LAI Yong. Some problems of sand in triaxial test[J]. 2004, 15(3): 60–64. (in Chinese))
    [10] BISHOP A W, ELDIN G. Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength[J]. Géotechnique, 1950, 2(1): 13–32.
    [11] 龚晓南. 土力学[M]. 北京: 中国建筑工业出版社, 2002. (GONG Xiao-nan. Soil mechanics[M]. Beijing: China Architecture and Building Press, 2002. (in Chinese))
    [12] BRANDON T L, ROSE A T, DUNCAN J M. Drained and undrained strength interpretation for low-plasticity silts[J]. American Society of Civil Engineers, 2006, 132(2): 250–257.
    [13] DESROSIERS R, SILVA A J. Strength behavior of marine sands at elevated confining stresses[J]. Marine Georesources and Geotechnology, 2002, 1(20): 1–19.
    [14] LADE P V, YAMAMURO J A, BOPP P A. Drained and undrained strengths of sand in axisymmetric tests at high pressures[J]. Geotechnical Special Publication, 2006, 156: 87–102.
    [15] 钱家欢, 殷宗泽. 土工原理与计算 [M]. 2版. 北京: 中国水利水电出版社, 1996. (QIAN Jia-huan, YIN Zong-ze. Geotechnical principles and calculation[M]. 2nd ed. Beijing: China Water Power Press, 1996. (in Chinese))
    [16] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
计量
  • 文章访问数:  3560
  • HTML全文浏览量:  6
  • PDF下载量:  2231
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-14
  • 发布日期:  2012-07-24

目录

    /

    返回文章
    返回