• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于体积估算岩石断面分维的算法研究

薛东杰, 周宏伟, 赵天, 丁靖洋, 李潮

薛东杰, 周宏伟, 赵天, 丁靖洋, 李潮. 基于体积估算岩石断面分维的算法研究[J]. 岩土工程学报, 2012, 34(7): 1256-1261.
引用本文: 薛东杰, 周宏伟, 赵天, 丁靖洋, 李潮. 基于体积估算岩石断面分维的算法研究[J]. 岩土工程学报, 2012, 34(7): 1256-1261.
XUE Dong-jie, ZHOU Hong-wei, ZHAO Tian, DING Jing-yang, LI Chao. Algorithm of fractal dimension of rock fracture surface based on volume estimation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1256-1261.
Citation: XUE Dong-jie, ZHOU Hong-wei, ZHAO Tian, DING Jing-yang, LI Chao. Algorithm of fractal dimension of rock fracture surface based on volume estimation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1256-1261.

基于体积估算岩石断面分维的算法研究  English Version

基金项目: 国家自然科学基金项目(11172318);国家973项目(2009CB724602);科技部国际科技合作项目(2010DFA14640)
详细信息
    作者简介:

    薛东杰(1986– ),男,山东微山人,博士,主要从事煤与瓦斯共采及岩土工程等方面的研究。E-mail: xuedongjie@163.com。

  • 中图分类号: TU443

Algorithm of fractal dimension of rock fracture surface based on volume estimation

  • 摘要: 在计算岩石断裂粗糙表面分维时,为充分考虑利用基于激光扫描的断面高程数据,通过将各数据点连接构成类棱柱平行体或3面平行体直接覆盖粗糙断裂面,根据盒维数直接定义,提出体积覆盖算法。与传统的立方体覆盖法相比,体积覆盖法可以直接利用无须修正激光扫描点数据,避免立方体覆盖法坐标系位置差异导致的计算分维值差异,通过直接计算覆盖平行体体积估算岩石断面分维。进一步比较两类不同的平行体覆盖方法,针对同一粗糙表面,体积覆盖法计算的岩石断面分维均具有较高的精度,很好地克服了其他覆盖法中对覆盖格子形状(全部立方体或全部圆柱体)的统一要求,具有很强的适用性。
    Abstract: For calculating the fractal dimension of rock fracture rough surface, the prism-like or 3-side parallel bodies may be generated by connecting the data points on the fracture surface in order to take full account of laser scanning-based elevation data of the surface. A volume covering method is proposed for estimation of the fractal dimension of rough surface according to the definition of Minkowski dimension. Compared with the traditional cubic covering method, the volume covering method can be employed to directly calculate the volume of covering body and to estimate the fractal dimension without correction point of laser scanning data so as to avoid the differences caused by different coordinate systems. Furthermore, by comparing the two different types of parallel body covering methods for the same rough surface, all the volume covering methods have high accuracy in calculating the fractal dimension and have strong applicability overcoming the uniform shape requirements of the covering cells (all cubes or all cylinders).
  • [1] MANDELBROT B B, et al. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308: 721–723.
    [2] 孙红泉, 谢和平. 岩石断裂表面的分形模拟[J]. 岩土力学, 2008, 29(2): 347–352. (SUN Hong-quan, XIE He-ping. Fractal simulation of rock fracture surface[J]. Rock and Soil Mechanics, 2008, 29(2): 347–352. (in Chinese))
    [3] 王金安, 谢和平, KWASNIEWSKI M. 岩石断裂面的各向异性分形和多重分形研究[J]. 岩土工程学报, 1998, 20(6): 16–21. (WANG Jin-An, XIE He-ping, KWASNIEWSKI M A. On anisotropic fractal and multi fractal properties of rock fracture surfaces[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 16–21. (in Chinese))
    [4] 王长虹, 朱合华. 多重分形与Kriging插值在地层模型生成中的应用[J]. 岩土力学, 2011, 32(6): 1864–1868. (WANG Chang-hong, ZHU He-hua. Application of multifractal and Kriging interpolation to reconstruction of stratum[J]. Rock and Soil Mechanics, 2011, 32(6): 1864–1868. (in Chinese))
    [5] ZHOU H W, XIE H, KWASNIEWSKI M A. Developments in characterization of surface topography of rock joint[J]. Progress in Natural Science, 2001, 11(7): 481–489.
    [6] ZHOU H W, XIE H. Anisotropic characterization of rock fracture surfaces subjected to profile analysis[J]. Physics Letters A, 2004, 325(5-6): 355–362.
    [7] XIE H, WANG J A, XIE W H. Fractal effect of surface roughness on the mechanical behavior of rock joints[J]. Chaos, Solitons & Fractals, 1997, 8(2): 221–252.
    [8] CLARK K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface areamethod[J]. Computers & Geoscience, 1986, 12(5): 713–722.
    [9] 谢和平. 分形–岩石力学导论[M]. 北京: 科学出版社, 1996. (XIE He-ping. Fractals-rock mechanics[M]. Beijing: Science Press, 1996. (in Chinese))
    [10] CLARK K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface areamethod[J]. Computers & Geoscience, 1986, 12(5): 713–722.
    [11] XIE H, WANG J A, STEIN E. Direct fractal measurement and multifractal properties of fracture surface[J]. Phy Lett A, 1998, A 242: 41–50.
    [12] XIE H, WANG J A, KWASNIEWSKI M A. Multifractal characterization of rock fracture surfaces[J]. Int J Rock Mech Min Sci, 1999, 35(1): 19–27.
    [13] ZHOU H W, XIE H. Direct estimation of the fractal dimensions of a fracture surface of rock[J]. Surface Review and Letters, 2003, 10(5): 751–762.
    [14] 张亚衡, 周宏伟, 谢和平. 粗糙表面分形维数估算的改进立方体覆盖法[J]. 岩石力学与工程学报, 2005, 24(17): 3192–3196. (ZHANG Ya-heng, ZHOU Hong-wei, XIE He-ping. Improved cubic covering method for fractal dimensions of a fracture surface of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3192–3196. (in Chinese))
    [15] 谢和平, 薛秀谦. 分形应用中的数学基础与方法[M]. 北京: 科学出版社, 2005. (XIE He-ping, XUE Xiu-qian. Mathematical foundations and methods in fractals[M]. Beijing: Science Press, 2005. (in Chinese))
计量
  • 文章访问数:  992
  • HTML全文浏览量:  0
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-09
  • 发布日期:  2012-07-24

目录

    /

    返回文章
    返回