• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
吴世余, 宋新江. 不透水地基上设有排水棱体堤坝渗流计算的理论解[J]. 岩土工程学报, 2012, 34(1): 102-109.
引用本文: 吴世余, 宋新江. 不透水地基上设有排水棱体堤坝渗流计算的理论解[J]. 岩土工程学报, 2012, 34(1): 102-109.
WU Shi-yu, SONG Xin-jiang. Analytic solution of seepage calculation for dams and levees with mound drains on impervious strata[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 102-109.
Citation: WU Shi-yu, SONG Xin-jiang. Analytic solution of seepage calculation for dams and levees with mound drains on impervious strata[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 102-109.

不透水地基上设有排水棱体堤坝渗流计算的理论解

Analytic solution of seepage calculation for dams and levees with mound drains on impervious strata

  • 摘要: 论述了堤坝下游设有棱体和褥垫排水堤坝的渗流计算,排水边界的坡角大于 90 °。主要内容和成果有:①对于下游水深 H 2 = 0 的棱体排水,按柯钦娜式 q / k = μ h 0 ,高精度计算出流量和出逸点高度关系式的比例系数 μ 的倒值,并提出相应的 1/ μ 拟合式,以便于应用,应用转化的超越几何函数,导出出逸段的坡降计算式,并具体计算出排水边坡坡角 90 °, 135 °, 180 °的出逸坡降分布;②应用速度平面保角变换的简化方法,导出排水棱体临界水深 H C 的计算式,其推导过程较之努米诺夫的混合函数法大为简化,另提出相应的 H C 拟合式,以便于应用;③对于下游水深 H 2 H C 的棱体排水,按努氏式 Δ L2 = D1 H2+ D2 q / k ,高精度计算出下游区附加渗径 Δ L2 式的比例系数 D 1 D 2 ,并提出相应的拟合式,以便于应用,应用保角变换求出该型堤坝下游区的精确解,再结合努氏的上游区精确解,举出一具体算例,精确计算出堤坝的流量和渗透系数的比值 q / k ,出逸点高度 h s ,出逸段坡降 I 的分布,以及全程浸润线和上下两反弯点的坐标,可借以校核该型堤坝渗流有限元计算程序和其它近似计算方法的正确性及其计算精度;④对于下游水深 0< H2< HC 的棱体排水,提出出逸点高度 h s 和下游区附加渗径 Δ L2 两近似理论计算式,据此算出的 q / k h s ,与有限元计算的结果相符。

     

    Abstract: The seepage calculations of dams and levees with mound and layer drains on impervious strata are introduced. The slope angle of drain boundary is greater than 90 ° . The main contents and results are as follows:1) For the mound drain with the downstream water depth H2 =0, according to the Kochina ’s theory q / k = μ h 0 , the reciprocal of ratio μ between the flow quantity and the height h0 of release point is calculated, and the relevant fitting formula for 1 / μ #/is presented. By means of the transformed hypergeometric function, a formula for the exit gradient and its distributions with slope angles of 90 ° , 135 ° , 180 ° is given.2) The conformal mapping method is employed to get the critical water depth HC of the mound drain, and its derivation process is much simpler than that of the Novmurov’s method.3) For the mound drain with H2 HC, according to the Novmurov’s theory Δ L2= D1 H2+ D2 q/k , the proportional coefficients D1 and D2 of additional length of downstream seepage path are calculated, and two fitting formulae for D1 and D2 with enough precision are presented. The conformal mapping method is used to get the exact seepage solution in downstream district with mound drains, combined with the corresponding solution by Normurov in the upstream district of dams and levees, an example is calculated accurately to get the flow quantity ratio q / k, height of release point hs, distribution of exit gradient I, coordinates of the whole phreatic line and its inflection points to check the corresponding program of finite element and other approximate methods.4) For the mound drain with 0< H2< HC, two approximate formulae for the height hs of release point and the additional length Δ L2 of downstream seepage path are presented. The calculated results agree with the results of the finite element methods.