Abstract:
Based on the characteristics of the governing equations of the Biot’s consolidation, the suitable trial functions of displacement and excess pore water pressure satisfying the boundary conditions are obtained, and a semi-analytical numerical scheme for solving the plane strain consolidation of multi-layered and anisotropic soil with compressible constituents is presented by using the Galerkin’s method. Moreover, by means of the orthogonality of the trigonometric functions series, the weighted residual equations are decoupled to several independence ones associated with different series modes. A computer program is developed for solving the semi-analytical numerical equations. Several numerical examples are presented, and the numerical results are compared with other available solutions to verify the validity of the present method. The applicabilities of the present method in dealing with the anisotropy of permeability, the compressibility of pore fluid and the layered characteristics of soil are demonstrated.