• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
常利营, 卢建移, 段波, 陈群. 基于Hopfield网络的地下工程围岩稳定性分类[J]. 岩土工程学报, 2011, 33(zk1): 187-190.
引用本文: 常利营, 卢建移, 段波, 陈群. 基于Hopfield网络的地下工程围岩稳定性分类[J]. 岩土工程学报, 2011, 33(zk1): 187-190.
CHANG Li-ying, LU Jian-yi, DUAN Bo, CHEN Qun. Stability classification of adjoining rock of underground engineering based on Hopfield network[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 187-190.
Citation: CHANG Li-ying, LU Jian-yi, DUAN Bo, CHEN Qun. Stability classification of adjoining rock of underground engineering based on Hopfield network[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 187-190.

基于Hopfield网络的地下工程围岩稳定性分类

Stability classification of adjoining rock of underground engineering based on Hopfield network

  • 摘要: 运用具有联想记忆功 能的 Hopfield 神经网络对地下工程的围岩稳定性进行分类,选用岩石质量指标 R QD 、岩石单轴饱和抗压强度 R w 、完整性系数 K v 、结构面强度系数 K f 和地下渗水量 ω 等 5 个指标作为分类的影响因素,利用 matlab 中提供的函数构建网络并进行仿真,通过对分类标准的记忆,建立一个可以对地下工程围岩稳定性进行分类的 hopfield 网络。然后将网络用于漫湾水电站和广州抽水蓄能电站两个工程围岩的实测数据进行围岩分类,来检验网络的分类能力。研究表明, Hopfield 网络的分类结果是比较可靠的,网络收敛速度很快,具有很好的实用性。

     

    Abstract: The Hopfield neural network, with associative memory function, is used in the stability classification of adjoining rock of underground engineering. Five indexes, including rock quality designation ( RQD), uniaxial compressive strength ( Rw ), integrality coefficient ( K v ), strength coefficient of structural plane ( K f ) and seepage measurement of groundwater ( ω ), are selected as the factors which affect the classification. The function provided by matlab toolbox is used to build a network and for stimulation. After memorizing the standard of classification, a Hopfield network is established for the stability classification of adjoining rock of underground engineering. Then the network is used in the classification of the measured samples of two projects, Manwan Hydropower Station and Guangzhou Pumped Storage Power Station, to detect the classification ability of the network. The research shows that the classification results based on the Hopfield network are reliable. The network has a fast convergence rate and high practicability.

     

/

返回文章
返回