• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
熊峥, 伍法权. 基于进化—支持向量机的地下洞室可靠性分析[J]. 岩土工程学报, 2010, 32(7).
引用本文: 熊峥, 伍法权. 基于进化—支持向量机的地下洞室可靠性分析[J]. 岩土工程学报, 2010, 32(7).
Reliability of underground caverns based on genetic algorithm and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
Citation: Reliability of underground caverns based on genetic algorithm and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).

基于进化—支持向量机的地下洞室可靠性分析

Reliability of underground caverns based on genetic algorithm and support vector machine

  • 摘要: 将地下洞室围岩测线的相对位移值及相对位移极限值分别作为施与结构的应力和结构自身强度,从而构造地下洞室可靠性分析的功能函数显式表达式。使用数值方法计算符合概型分布的不同岩体物理力学参数条件下的相对位移值并将其作为训练样本,采用遗传算法优化支持向量机的惩罚因子及核参数,用优化得到的支持向量机进行相对位移值的预测,最后利用系统可靠度理论及网络概率估算技术(PNET法)求解地下洞室开挖可靠度。以锦屏一级水电站主变室为例,尝试采用上述方法对各层开挖的可靠性进行分析,结果表明:第一层开挖可靠度最低,随着开挖的进行,系统可靠度逐渐升高,最终趋于一个稳定状态。

     

    Abstract: The genetic algorithm (GA) and support vector machine (SVM) are applied to analyze the reliability of underground caverns. The explicit form of performance function is established by use of the relative displacement values and relative displacement limit values of surrounding rock. The learning samples of the relative displacement values are built by numerical simulation; then the relative displacement values are predicted by the support vector machine that is optimized by the genetic algorithm. An example in Jinping Hydropower Station is given for illustrating the application of the proposed approach. The new method is proved effective in the reliability analysis of underground caverns.

     

/

返回文章
返回