• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010, 32(6).
引用本文: 高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010, 32(6).
Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
Citation: Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).

基于蚁群聚类算法的岩爆预测研究

Prediction of rock burst based on ant colony clustering algorithm

  • 摘要: 由于岩爆是深部地下工程常见的一种重大工程灾害,因此,岩爆预测研究具有重大的现实意义。岩爆影响因素众多且关系复杂,不能用简单的方法进行分析判断,一般在工程类比的基础上,采用聚类的方法进行。但由于岩爆问题环境的复杂性,岩爆预测的聚类问题是一个复杂的模糊、随机优化问题,采用传统方法难免带来很多局限性。为了更好地解决这类问题,首次把蚁群聚类算法这种新近提出的仿生聚类算法引入岩爆研究领域,以解决其预测问题,提出一种岩爆预测的新方法。该方法在分析岩爆实例资料的基础上,采用蚁群聚类算法,以工程类比的思想判断岩爆的发生状态。两个工程应用实例证明,该算法可以自动把岩爆事件分成几种类似的状态,判断准确率较高,计算速度较快,是一种比较实用的岩爆预测新方法,值得在岩石地下工程研究领域推广应用。

     

    Abstract: The rock burst is a kind of large disaster in deep underground engineering, thus, it is very important to predict the rock burst. The influence factors of rock burst are numerous and their relationship is very complicated. It can not be solved by use of simple methods, Generally, based on engineering analogy and geological analysis, the clustering methods have been widely used. For the complicated environment of rock burst, this clustering problem is a very complicated fuzzy and random optimization problem, and can not be solved by use of the traditional methods very well. A new bionics clustering optimization method, ant colony clustering algorithm which is recently proposed, is introduced into the prediction of rock burst for the first time. On such a basis, a new method for the prediction of rock burst is proposed. According to analysis of the data of rock burst samples and from the engineering analogy thinking by the ant colony clustering algorithm, the rock burst can be predicted. Two examples are used to verify the new algorithm. The engineering application has proved that this new algorithm can automatically sort the rock burst samples, that the validity is very high, and that the computing velocity is rapid, so it is a very practical method.

     

/

返回文章
返回