• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
徐飞 , 徐卫亚. 岩爆预测的粒子群优化投影寻踪模型[J]. 岩土工程学报, 2010, 32(5).
引用本文: 徐飞 , 徐卫亚. 岩爆预测的粒子群优化投影寻踪模型[J]. 岩土工程学报, 2010, 32(5).
XU Fei, XU Weiya. Projection pursuit model based on particle swarm optimization for rock burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
Citation: XU Fei, XU Weiya. Projection pursuit model based on particle swarm optimization for rock burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).

岩爆预测的粒子群优化投影寻踪模型

Projection pursuit model based on particle swarm optimization for rock burst prediction

  • 摘要: 岩爆是深部高地应力区地下岩体工程中的主要工程地质灾害之一,对其发生及烈度预测是一个复杂的不确定系统问题。结合投影寻踪算法、粒子群优化算法和逻辑斯谛曲线函数,并选取洞室最大切向应力与岩石单轴抗压强度的比值、脆性系数和弹性能量指数作为判别指标,建立了岩爆预测的粒子群优化投影寻踪模型。该模型一方面采用粒子群算法优化投影指标函数及逻辑斯谛曲线函数参数,确保了模型参数的准确性;另一方面利用逻辑斯谛曲线函数建立投影值与经验等级之间的非线性关系。模型的测试结果显示了良好的精度。将该模型应用到秦岭隧道和冬瓜山铜矿的岩爆预测中,预测结果与实际情况吻合较好,表明该模型在岩爆预测中的可行性和有效性。

     

    Abstract: Rock burst is one of the main engineering geological hazards of underground rock engineering in deep high ground stress zone. The prediction of rock burst intensity is a complex systematic problem of uncertainty. Based on the projection pursuit (PP), the particle swarm optimization (PSO) and the logistic curve function (LCF), a new model for rock burst prediction is developed, which is referred to as projection pursuit based on particle swarm optimization (PSO-PP). The ratio of the maximum tangential stress of the cavern wall to the uniaxial compressive strength, the brittleness coefficient and the elastic energy index of rock are regarded to as the discrimination indices of PSO-PP. The model, on the one hand, uses the PSO to optimize the projection index function and the parameters of LCF so as to ensure the accuracy of the parameters used in the model. On the other hand, the nonlinear relationship between projection values and empirical grades is established according to LCF. The test results of the model show a very good precision. In this study, the prediction results obtained by applying the developed model to Qinling Tunnel and Dongguashan Mine are well consistent with the practical situation. It indicates that the model is feasible and effective for rock burst prediction.

     

/

返回文章
返回