• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
汪振, 戴启权, 张宇亭, 蔡少咏. 堆载引起岸坡土体与高桩码头相互作用机制试验研究[J]. 岩土工程学报, 2024, 46(S1): 254-258. DOI: 10.11779/CJGE2024S10032
引用本文: 汪振, 戴启权, 张宇亭, 蔡少咏. 堆载引起岸坡土体与高桩码头相互作用机制试验研究[J]. 岩土工程学报, 2024, 46(S1): 254-258. DOI: 10.11779/CJGE2024S10032
WANG Zhen, DAI Qiquan, ZHANG Yuting, CAI Shaoyong. Experimental study on interaction mechanism between slope soil and pile- supported wharf subjected to yard loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 254-258. DOI: 10.11779/CJGE2024S10032
Citation: WANG Zhen, DAI Qiquan, ZHANG Yuting, CAI Shaoyong. Experimental study on interaction mechanism between slope soil and pile- supported wharf subjected to yard loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 254-258. DOI: 10.11779/CJGE2024S10032

堆载引起岸坡土体与高桩码头相互作用机制试验研究

Experimental study on interaction mechanism between slope soil and pile- supported wharf subjected to yard loads

  • 摘要: 码头后方堆场堆载会导致倾斜岸坡场地的侧向位移,对码头基础设施安全构成挑战。以天津港典型高桩码头为背景,基于大型土工离心试验平台,探究了堆场荷载作用下岸坡场地的变形特性、码头位移和内力的分布规律。试验结果表明:堆场荷载会导致岸坡出现显著的水平位移,其主要位于后承台下方区域,且随着距堆场距离的增加而逐步趋近于零;码头后承台随堆场荷载的增加会产生显著的向海侧水平位移,由此导致码头前后承台间距缩小进而增加碰撞风险;后承台桩基在岸坡土体水平变形作用下其弯矩响应由桩顶至底部呈S型分布模式;前承台桩基弯矩响应要显著低于后承台,其峰值小于后承台桩基弯矩响应的50%。研究结论可为高桩码头的破坏机制提供借鉴。

     

    Abstract: The back yard loads of a wharf can cause lateral displacements at sloping shoreline sites, posing a challenge to the safety of the infrastructures. With the engineering prototype of a typical pile-supported wharf in Tianjin Port area and based on a large-scale geotechnical centrifugal platform, the deformation characteristics of the shoreline site, the displacement and internal force of the wharf under the action of yard loads are investigated. The results show that the yard loads cause significant horizontal displacements of the slope soil. The horizontal displacement of the soil occurs mainly in the area below the rear platform, which converges to zero as the distance from the yard increases. With the increasing yard loads, significant seaward horizontal displacements of the rear platform are produced, resulting in a reduction in the distance between the front and rear platforms, which in turn increases the risk of collision. The pile foundation at the rear platform is subjected to the horizontal deformation of the slope soil, and the bending moment from the top to the bottom of the pile is distributed in an S-shaped pattern. The bending moment of the pile in the front platform is significantly lower than that of the pile in the rear platform, with the peak value being less than 50%. The findings of this study can provide reference for the damage mechanism of the pile-supported wharf.

     

/

返回文章
返回