• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
梁越, 赵硕, 喻金桃, 许彬, 张斌, 龚胜勇, 舒云林. 基于Transformer模型堤坝渗漏入口精准识别方法研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240975
引用本文: 梁越, 赵硕, 喻金桃, 许彬, 张斌, 龚胜勇, 舒云林. 基于Transformer模型堤坝渗漏入口精准识别方法研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240975
Research on accurate identification method of seepage inlet of embankment dam based on Transformer modeling[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240975
Citation: Research on accurate identification method of seepage inlet of embankment dam based on Transformer modeling[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240975

基于Transformer模型堤坝渗漏入口精准识别方法研究

Research on accurate identification method of seepage inlet of embankment dam based on Transformer modeling

  • 摘要: 渗漏是堤坝工程面临的主要安全隐患,渗漏入口精确识别与定位对降低堤坝风险至关重要。通过堤坝渗漏入口示踪剂分布及其运移特征模拟数据,训练学习Transformer模型以确定最优参数条件并分析该条件下该模型的预测效果,进一步通过室内模型试验验证该模型的可靠性。研究表明:(1)当迭代次数达600次时,模型预测的流速最大值相对误差最小,且最大流速值坐标与真实渗漏入口坐标最为接近,预测效果最佳;在此条件下,当数据采集时长为50秒时,模型预测的流速最大值相对偏差最小,预测效果最优。(2)在最佳迭代次数和数据采集时长条件下,模型预测精度超过95%,渗漏入口大小和渗漏流量的预测值与真实值差异极小,且流速和位置预测相对误差均较低,其中位置预测相对误差低于5%。(3)将电导率试验采集数据转换为示踪剂浓度并输入至该模型进行流速分布预测,可知该模型能准确定位渗漏入口位置,且流速和渗漏入口坐标的预测平均相对误差均低于10%,进而验证了该模型在渗漏入口定位中的有效性与准确性。相关研究成果可为堤坝渗漏入口精确识别奠定理论基础和提供技术支撑。

     

    Abstract: Leakage is a significant safety hazard for embankment dams, and accurate identification and localization of leakage inlets are crucial for reducing dam risk. Using simulated tracer distribution and transport data of leakage inlets, we trained a Transformer model to determine optimal parameter conditions and evaluate its predictive performance. The model's reliability was further verified through indoor experiments. The study found that: (1) when the number of iterations reaches 600, the relative error in the predicted maximum flow velocity is minimized, and the coordinates of the predicted maximum flow velocity are closest to those of the actual leakage inlet. Under this condition, when the data collection time is 50 seconds, the relative deviation in the predicted maximum flow velocity is also minimized, resulting in the best prediction. (2) With the optimal number of iterations and data collection time, the model achieves more than 95% prediction accuracy. The predicted values for leakage inlet size and flow rate are close to the actual values, with low relative errors in flow rate and location predictions. The relative error in location prediction is less than 5%. (3) Data from conductivity tests were converted into tracer concentrations and input into the model to predict flow velocity distribution. The model accurately locates the leakage inlet, with average relative errors in predicting flow velocity and inlet coordinates below 10%, confirming the model’s validity and accuracy in locating leakage inlets.These findings lay the theoretical foundation and provide technical support for the accurate identification of leakage inlets in embankment dams.

     

/

返回文章
返回