• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
彭家奕, 傅中志, 沈振中, 徐思远. 基于CT图像人工智能分析的砂砾料几何特征参数提取方法[J]. 岩土工程学报. DOI: 10.11779/CJGE20240740
引用本文: 彭家奕, 傅中志, 沈振中, 徐思远. 基于CT图像人工智能分析的砂砾料几何特征参数提取方法[J]. 岩土工程学报. DOI: 10.11779/CJGE20240740
Parameter Extraction of Geometric Features of Gravel Material Based on Artificial Intelligence Analysis of CT Images[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240740
Citation: Parameter Extraction of Geometric Features of Gravel Material Based on Artificial Intelligence Analysis of CT Images[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240740

基于CT图像人工智能分析的砂砾料几何特征参数提取方法

Parameter Extraction of Geometric Features of Gravel Material Based on Artificial Intelligence Analysis of CT Images

  • 摘要: 砂砾料是土石坝常用的填筑材料,其力学特性受到级配、颗粒形状和空间排布等颗粒几何特征的显著影响。准确获取这些几何特征是研究砂砾料力学特性的关键,对于土石坝设计和施工具有重要意义。本研究提出了一种基于新型深度学习模型的砂砾料CT图像分割方法,结合CT图像三维重建技术和拓扑原理,形成了一套完整的砂砾料几何特征参数提取方法,并研发了相应的程序,提供了算法流程和参数设置。研究结果表明,基于该方法的砂砾料CT图像分割精度高达95%,使用分割结果重建的三维模型进行计算,能够准确提取砂砾料的质心坐标、粒径、长宽比和球度等几何特征参数。研究还揭示了砂砾料试样具有砂粒位于试样底部、砾粒分布较均匀的空间分布特点,以及颗粒长宽比和球度概率密度呈偏态分布的形状因子分布特点。本研究有望为砂砾料力学特性研究提供新的技术手段,进而为优化土石坝的设计和施工提供新的思路。

     

    Abstract: Sand and gravel mixture is a widely used fill material for earth and rock dams, with its mechanical properties significantly influenced by particle geometric characteristics such as gradation, shape, and spatial arrangement. Accurately obtaining these characteristics is crucial for studying the mechanical properties of gravel, which is vital for the design and construction of earth and rock dams. This study proposes a novel CT image segmentation method for gravel based on a deep learning model, integrating CT image three-dimensional reconstruction and topology principles to create a comprehensive method for extracting geometric feature parameters of gravel. A corresponding program was developed to provide algorithmic flow and parameter settings. Results show that this method achieves a segmentation accuracy of over 95%, allowing precise extraction of geometric parameters such as center of mass coordinates, grain size, aspect ratio, and sphericity. The study reveals that gravel specimens exhibit a spatial distribution where sand grains settle at the bottom and gravel grains are uniformly distributed. Additionally, the aspect ratio and sphericity display a skewed distribution in the predicted probability densities. This study is expected to provide new technical means for investigating the mechanical properties of gravel, thereby offering new insights for optimizing the design and construction of earth and rock dams.

     

/

返回文章
返回