• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
刘学伟, 刘云豪, 刘滨, 刘泉声, 陈菊香, 刘庆成. 考虑分区劣化的围岩力学参数精细化反演机器学习模型研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240641
引用本文: 刘学伟, 刘云豪, 刘滨, 刘泉声, 陈菊香, 刘庆成. 考虑分区劣化的围岩力学参数精细化反演机器学习模型研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240641
Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
Citation: Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641

考虑分区劣化的围岩力学参数精细化反演机器学习模型研究

Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration

  • 摘要: 围岩力学参数是稳定性评价中的重要指标之一,然而,现有方法通过分析模型内所有岩层,往往导致反演参数值偏大。为更精细化研究围岩分区力学参数,将围岩分区方法与参数反演模型相结合,提出了一种考虑分区劣化的围岩力学参数反演机器学习模型。该模型利用冠状病毒群体免疫算法(CHIO)对最小二乘支持向量机(LSSVM)的惩罚因子和核函数宽度进行优化,从而显著提升了参数反演的精度与稳定性。通过圆形巷道塑性区的理论解及工程应用,验证了围岩分区方法的有效性。以淮南矿区张集矿某岩石回风大巷为依托,采用五种不同的混合机器学习模型对围岩力学参数的预测精度和泛化能力进行了对比,结果表明CHIO-LSSVM方法在参数预测方面具有更高的准确性。最后,结合现场实测变形数据,开展了考虑围岩分区劣化的参数反演分析,并通过正算结果验证了反演精度,表明该模型适用于深部巷道围岩分区参数的精细化反演。

     

    Abstract: The mechanical parameters of surrounding rock are one of the critical indicators in stability evaluation. However, existing methods that analyze all strata within a model often result in overestimated parameter values. To conduct a more refined study on the zonation characteristics of surrounding rock mechanical parameters, a novel approach combining surrounding rock zonation methods with parameter inversion models has been proposed, introducing a machine learning model for the inversion of mechanical parameters considering zonation degradation. This model employs the Coronavirus Herd Immunity Optimization (CHIO) algorithm to optimize the penalty factor and kernel function width of the Least Squares Support Vector Machine (LSSVM), significantly enhancing the precision and stability of parameter inversion. The effectiveness of the proposed method has been validated through theoretical solutions and engineering applications. Utilizing the Zhangji Mine in the Huainan mining area as a case study, five different hybrid machine learning models were compared regarding their prediction accuracy and generalization capabilities for surrounding rock mechanical parameters. The results demonstrate that the CHIO-LSSVM method achieves higher accuracy in parameter prediction. Finally, by integrating field-measured deformation data, parameter inversion analysis considering surrounding rock zonation degradation was conducted, and the inversion accuracy was validated through forward calculation results, indicating that this model is suitable for the refined inversion of zonation parameters in deep tunnel surrounding rock.

     

/

返回文章
返回