• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
佴宇鏖, 周佳庆, 李长冬, 郭利国, 甘馥硕, 朱寅斌. 基于裂隙网络几何特征的岩体溶质传输过程预测模型研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240355
引用本文: 佴宇鏖, 周佳庆, 李长冬, 郭利国, 甘馥硕, 朱寅斌. 基于裂隙网络几何特征的岩体溶质传输过程预测模型研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240355
Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355
Citation: Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355

基于裂隙网络几何特征的岩体溶质传输过程预测模型研究

Predictive model of solute transport processes in fractured rock based on geometric features

  • 摘要: 裂隙岩体中溶质传输的机理与运移过程预测是水工岩石力学与水文地质领域的研究前沿和热点,同时也是基岩裂隙含水层污染治理、高放射性核废料安全处置、地下资源高效开发、渗漏示踪及灾害化学信号解译等应用需求的关键瓶颈难题。本文开展了不同裂隙网络几何特征下的岩体溶质运移过程模拟,系统性分析了裂隙密度、裂隙离散性、裂隙平均开度对溶质运移过程的定量控制机制。分析结果表明,裂隙密度和平均开度在岩体溶质传输过程中起决定性控制作用,而裂隙分布离散系数对溶质传输过程的影响程度,则取决于特定裂隙网络形成的连通路径系统。在此基础上,建立了基于裂隙无量纲密度和平均开度的岩体关键传质系数(水动力弥散系数D和溶质传输速度Vt)参数化表征公式。通过将岩体关键传质系数的参数化表征公式,嵌入宏观对流-扩散经典解析解中,构建出了基于裂隙网络几何特征参数的岩体溶质传输过程预测模型。最后,通过与不同工况下的岩体溶质传输数值模拟结果对比,验证了本文所提预测模型的有效性。本文所构建的溶质传输过程预测模型,能够仅依据裂隙网络几何特征参数和水动力条件,实现溶质传输过程的高保真度预测。研究成果对于低成本、快速高效地预测裂隙岩体中的物质运移过程提供了重要支撑,对于地下环境污染快速评估、地下资源高效开采具有重要理论意义;所揭示的裂隙网络几何特征对溶质传输特性的定量控制机制,为岩体结构演变与水化学信号关联机制的研究奠定了理论基础,在水化学信号示踪岩体灾变状态及灾害早期预警方面具有潜在应用价值。

     

    Abstract: The mechanisms and predictive modeling of solute transport in fractured rocks represent a frontier and hotspot in the fields of hydraulic rock mechanics and hydrogeology. They also address critical scientific challenges, including pollution remediation in fractured bedrock aquifers, safe disposal of high-level radioactive waste, efficient underground resource extraction, leakage tracing, and the interpretation of chemical signals associated with geohazards. This study simulates solute transport processes under various fracture network geometric characteristics, systematically analyzing the quantitative control mechanisms of fracture density, fracture discreteness, and mean fracture aperture on solute transport. The results indicate that fracture density and mean aperture are decisive factors in controlling solute transport, while the influence of fracture distribution discreteness depends on the connectivity of pathways formed by specific fracture networks. Based on these findings, parameterization formulas for key transport coefficients—hydrodynamic dispersion coefficient (D) and solute transport velocity (Vt)—were developed using dimensionless fracture density and mean aperture. These formulas were incorporated into the classical macroscopic advection–dispersion analytical solution to construct a predictive model for solute transport processes based on fracture network geometric parameters. Comparison with numerical simulation results under various conditions validated the model's accuracy and reliability. The proposed model enables high-fidelity prediction of solute transport processes using only fracture network geometric parameters and hydrodynamic conditions. This provides critical support for low-cost, efficient predictions of solute transport in fractured rocks. The findings have significant theoretical implications for rapid assessments of subsurface pollution and efficient underground resource exploitation. Additionally, the revealed quantitative control mechanisms of fracture network geometry on solute transport establish a theoretical basis for studying the coupling between rock mass structural evolution and hydrochemical signals. These insights hold potential applications in tracing rock failure states and early warning of geohazards using hydrochemical signals.

     

/

返回文章
返回