• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李纯纯, 熊峰, 张国华, 华东杰, 曹伟腾, 唐志成. 超低温作用下花岗岩力学特性及地下LNG储库稳定性研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240085
引用本文: 李纯纯, 熊峰, 张国华, 华东杰, 曹伟腾, 唐志成. 超低温作用下花岗岩力学特性及地下LNG储库稳定性研究[J]. 岩土工程学报. DOI: 10.11779/CJGE20240085
Study on mechanical properties of granite under ultra-low temperature and stability of underground LNG storage facility[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240085
Citation: Study on mechanical properties of granite under ultra-low temperature and stability of underground LNG storage facility[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240085

超低温作用下花岗岩力学特性及地下LNG储库稳定性研究

Study on mechanical properties of granite under ultra-low temperature and stability of underground LNG storage facility

  • 摘要: 花岗岩分布广泛、强度高,是低温液化天然气(LNG)地下存储的理想介质。然而LNG形成的极端低温(-162℃)使得花岗岩岩体性质发生改变,影响储库安全。为了探究超低温下花岗岩力学特性,开展-90℃~-165℃低温环境下干燥和饱和花岗岩单轴压缩试验、热膨胀测试以及微观观察。试验结果表明,当温度从-90℃降低到-165℃时,饱和花岗岩的抗压强度和弹性模量分别提高31.1%和24%,干燥时的弹性模量提高了12.8%,抗压强度变化不明显。力学强度提升主要原因在于随着温度的降低,干燥花岗岩因为自身矿物结构低温收缩导致内部颗粒胶结作用增强;饱和花岗岩由于含有孔隙水,遇低温冻结成冰,将岩石空隙与裂纹粘连的更加紧密,岩石内部结构更为致密。通过试验数据建立了岩石线膨胀系数与温度的负相关经验关系式,嵌入COMSOL中热-力耦合模型,实现低温LNG储库长期稳定性分析。随着运营年限的增加,地下储库围岩会随着温度的降低,岩石产生冻胀效应,岩层间发生挤压变形,导致地表出现隆起风险。

     

    Abstract: Granite is characterized as wide-distribution and high strength, which is an ideal medium for underground storage of low-temperature liquefied natural gas (LNG). However, LNG formed extreme low temperature (-162℃) causes changes in the properties of granite, which affects the storage safety. In order to explore the mechanical properties of granite at ultra-low temperature, uniaxial compression test, thermal expansion test and microscopic observations were conducted on dry and saturated granite under -90°C to -165°C. The experimental results show that when the temperature decreases from -90°C to -165°C, the compressive strength and elastic modulus of saturated granite increase by 31.1% and 24%, respectively, while the elastic modulus of dry granite increases by 12.8%, and its compressive strength shows no significant change. The main reason for the increase in mechanical strength is that with the decrease of temperature, the dry granite experiences a low-temperature shrinkage of minerals, leading to enhanced internal particle bonding. Due to the presence of pore water, saturated granite freezes into ice at low temperatures, causing the rock voids and cracks to adhere more tightly. Hence, internal structure of granite becomes denser. A negative correlation empirical formula between rock linear expansion coefficient and temperature was established through experimental data, and embedded into the thermal mechanical coupling model in COMSOL to achieve long-term stability analysis of low-temperature LNG storage. With the increase of operating years, the surrounding rock of underground storage will experience frost heave effect with the decrease of temperature, resulting in compression deformation between rock layers and the risk of surface uplift.

     

/

返回文章
返回