Abstract:
Using polypropylene fiber and cement to modify iron tailings, the effects of fiber content, dynamic-static ratio and curing age on the deformation characteristics of the fiber cement-modified iron tailing (FCIT) under different cyclic loading modes are explored through the dynamic triaxial tests. The research results show that: (1) The deformation behaviors of FCIT under intermittent loading and progressive loading are in the state of plastic stability and plastic creep at curing age of 7 d. (2) By comparing the deformations of continuous loading and intermittent loading, it is found that the variation range of the cumulative strain ( \varepsilon _\textp ) of FCIT under intermittent loading is generally smaller than that of \varepsilon _\textp caused by continuous loading. (3) Assigning a multiple factor to the cumulative strain of FCIT under progressive loading improves predictions for the cumulative strain under continuous loading. The corrected cumulative strain satisfies the prediction formula composed of power function and linear function.