• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
刘禹杉, 孙淼军, 吴帅峰, 张丽雅, 孙黎明. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
引用本文: 刘禹杉, 孙淼军, 吴帅峰, 张丽雅, 孙黎明. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
LIU Yushan, SUN Miaojun, WU Shuaifeng, ZHANG Liya, SUN Liming. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
Citation: LIU Yushan, SUN Miaojun, WU Shuaifeng, ZHANG Liya, SUN Liming. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051

土石料粒径与级配的图像智能识别研究

Intelligent image recognition of particle size and gradation of earth-rock

  • 摘要: 土石料的级配直接影响着土石坝的质量与防渗,为解决传统人工筛分和目测超粒径剔除的低效率与随机性。采用基于MaskRCNN算法的图像识别技术,从标准球体的图像识别入手,研究了不同组别粒径下识别球体数量与真实数量间的关系,提出了将颗粒平面识别向空间体积扩展的椭球计算方法,建立了基于指数函数的图像识别与级配之间的转换方法。采用该方法应用于碎石料和砂石料的粒径与级配识别中,相关系数均提升10%以上,级配曲线所反映的CuCc准确度最高提升35.26%。该研究为土石料级配的图像识别提供了新方法。

     

    Abstract: The gradation of soil and stone materials directly affects the quality and anti-seepage of earth-rock dams. In order to solve the low efficiency and randomness of the traditional manual screening and the visual removal of oversized particles, the image recognition technology based on the MaskRCNN algorithm is used to start with the image recognition of standard spheres, and the relationship between the number of recognized spheres and the real number under different groups of particle sizes is studied. The ellipsoid calculation method that extends particle plane recognition to space volume is proposed, and the transformation method between the image recognition and the gradation based on the exponential function is established. By applying this method to the identification of particle size and the gradation of crushed stone and gravel, the correlation coefficient increases by more than 10%, and the accuracy of Cu and Cc reflected by the gradation curve is up to 35.26%. This stud may provide a new method for the image recognition of soil and stone gradation.

     

/

返回文章
返回