• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
刘琦, 邓大鹏, 鲁克文. 岩溶坡面土壤地下漏失过程模拟研究[J]. 岩土工程学报, 2023, 45(S1): 166-170. DOI: 10.11779/CJGE2023S10041
引用本文: 刘琦, 邓大鹏, 鲁克文. 岩溶坡面土壤地下漏失过程模拟研究[J]. 岩土工程学报, 2023, 45(S1): 166-170. DOI: 10.11779/CJGE2023S10041
LIU Qi, DENG Dapeng, LU Kewen. Simulation of underground leakage process of soil on Karst slopes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 166-170. DOI: 10.11779/CJGE2023S10041
Citation: LIU Qi, DENG Dapeng, LU Kewen. Simulation of underground leakage process of soil on Karst slopes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 166-170. DOI: 10.11779/CJGE2023S10041

岩溶坡面土壤地下漏失过程模拟研究

Simulation of underground leakage process of soil on Karst slopes

  • 摘要: 西南喀斯特地区石漠化现象严重,其独特的地表地下二元水文地质结构导致了表层岩溶带水土流失不仅表现为坡面水土流失,同时还存在水土向地下漏失的现象。为揭示岩溶坡面土壤地下漏失过程的规律和机理,利用物理模拟试验和CFD-DEM数值模拟相结合的方法,分析坡面土壤地下漏失的过程中土壤颗粒运移规律和特征。研究结果表明随着降雨的历程,坡面不同层位的土壤颗粒运移速度由坡顶到坡底逐渐增大的趋势转变为整个坡面土壤颗粒运移速度趋于一致,从剖面上看,土壤颗粒运移速度从降雨初期的表层 > 中层 > 底层转变为降雨后期的速度趋于一致;随着降雨历程,坡面土壤由地表流失出口和地下漏失口率先侵蚀,随后坡面形成侵蚀细沟并加剧侵蚀最终发展到坡面整体滑移的过程;随着降雨的进行,坡面颗粒与坡面的接触数先显著降低后小幅增大,裂隙口下缘的颗粒与坡面接触数逐渐增大;此外,在降雨过程中,坡面上的颗粒与坡面在Y方向的接触力整体上始终较小,表明降雨过程中颗粒与坡面的相互作用力较弱。

     

    Abstract: The karst rocky desertification is serious in the karst areas of southwest China. Its unique surface and underground dual-hydrogeological structure have led to the water and soil loss in the surface karst zones, which is manifested as slope soil loss and the phenomenon of water and soil leakage to the ground. In order to reveal the law and mechanism of underground leakage of soil on karst slopes, the physical simulation tests and CFD-DEM numerical simulations are used to analyze the law and characteristics of soil particle movement in the process of underground leakage of soil on slopes. The applicability and accuracy of the CFD-DEM numerical model are verified by comparing and analyzing the underground runoff and sediment yield process and the proportional characteristics of the runoff and sediment yield of the physical tests and the numerical model. The results show that the movement speed of soil particles in different layers on the slope surface gradually increases from the top to the bottom of the slope, and it tends to be consistent throughout the slope. From the profile, the movement speed of soil particles changes from the surface layer > the middle layer > the bottom layer at the beginning of rainfall to the same speed at the end of rainfall. With the rainfall process, the soil on the slope is first eroded from the surface runoff outlet and underground leak, and then forms erosion rills on the slope, which further aggravates the process of erosion and finally develops to the overall slope slip. During the rainfall process, the contact number between particles on the slope first significantly decreases and then slightly increases. The contact number between particles on the lower edge of the crack and the slope gradually increases. The contact force between particles and the slope in the Y direction is small, indicating that the contact force between the particles and the slope is weak during the rainfall process.

     

/

返回文章
返回