Abstract:
The laterite, from the site near the East China University of Technology, is made into the triaxial remodeled soil samples with the natural moisture content of 23% and the densities of 1.75, 1.80, 1.85, 1.90, 1.95 g/cm
3. The triaxial shear tests on 5 groups of 20 soil samples are carried out under consolidation and drainage (CD) conditions with the confining pressures of 50, 100, 200, 300 kPa. The stress-strain and volumetric strain-stress curves for each group of Nanchang compacted laterite at different densities are plotted and segmented, and the shear deformation characteristics of Nanchang remodeled laterite under CD conditions are analyzed. The effects of agglomerates in the laterite on the shear deformation are discussed. The results show that the triaxial shear deformation under CD conditions of remodeled laterite can be divided into three stages, which are mainly related to the degree of rupture of agglomerates in the soil samples. When the shear stress equal to 50 kPa, the agglomerates rupture. The shear deformation of the soil is the result of the coupling effects of the mean principal stress and the partial stress, and the soil samples break down at
q/
p=1.5.