Abstract:
It is of great significance to study the thermal damage and fracture characteristics of rocks for deep rock projects, such as geothermal exploitation. Within the framework of the traditional classical ordinary state-based peridynamic theory, a thermo-mechanical coupling model based on the non-Fourier heat conduction law is proposed by introducing a dual-phase-lag model. The model is validated through the transient heat conduction problems in the plate and thermal damage and fracture tests on LdB granite. It is found that the simulated results accurately reflect the thermal damage and fracture characteristics, as well as the discontinuity in temperature distribution, of LdB granite. Furthermore, through numerical analysis, it is observed that the temperature gradient relaxation time promotes heat conduction, leading to an increase in the degree of the thermal damage and fracture with an increase in the temperature gradient relaxation time, while it decreases with an increase in the heat flux relaxation time. This research provides valuable insights for a better understanding of the thermal damage and fracture behavior of rocks and offers beneficial explorations for optimizing the geothermal energy extraction projects.