• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
禹海涛, 朱晨阳, 傅大宝, 许乃星, 卢哲超, 蔡辉腾. 基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法[J]. 岩土工程学报. DOI: 10.11779/CJGE20230766
引用本文: 禹海涛, 朱晨阳, 傅大宝, 许乃星, 卢哲超, 蔡辉腾. 基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法[J]. 岩土工程学报. DOI: 10.11779/CJGE20230766
A hybrid method to identify pulse-like ground motions and pulse periods based on ST-CNN[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230766
Citation: A hybrid method to identify pulse-like ground motions and pulse periods based on ST-CNN[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230766

基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法

A hybrid method to identify pulse-like ground motions and pulse periods based on ST-CNN

  • 摘要: 如何快速准确识别脉冲型地震动是困扰学术界和工程界的关键难题,定量识别方法能克服人工识别的经验性限制,然而传统定量识别方法存在识别结果不一致、适用范围不广泛、难以同时给出脉冲周期或给出的脉冲周期部分情况下差异明显等问题。为此,本文建立了一种问题针对性融合学习规则并结合卷积神经网络,开发出了一种新的脉冲型地震动与脉冲周期同步识别方法。该学习规则通过对基于不同识别原理的多个传统典型识别方法进行自学习并融合,从而摒弃了以往繁琐的人工标记过程,并采用全球范围的30000条任意方向地震动数据进行训练和验证,得到了3个问题针对性卷积神经网络模型,分别命名为Strict识别模型、General识别模型以及T_P识别模型。为解决地震动时序输入信息不足导致模型泛化能力较弱的问题,本文还对CNN模型的输入结构进行优化,提出ST-CNN模型,增加S变换层将地震动时序变换至时频,从而增加频域分布信息并进一步提高识别精度。结果表明:Strict识别模型能严格区分脉冲型与非脉冲型地震动,识别的结果与其他方法基本一致;General识别模型能识别出更多的脉冲型地震动,适用范围更广;T_P识别模型识别的脉冲周期准确,并可与前述识别模型并用以同步输出识别结果。本文提出的问题针对性融合学习规则还可推广至其他工程领域与其他机器学习模型,建立的识别方法可为脉冲型地震动研究提供科学指导。

     

    Abstract: The rapid and precise identification of pulse-like ground motions is a key challenge that perplexes both the academic and engineering communities. Quantitative identification methods can overcome the empirical limitations of manual identification. However, traditional quantitative recognition methods suffer from inconsistencies in identification results, limited applicability, and difficulties in simultaneously determining pulse periods or significant differences in the pulse periods identified in some cases. In response, this paper establishes a problem-specific fusion learning rule, combined with a Convolutional Neural Network(CNN), to develop a novel method for the synchronous identification of pulse-like ground motions and their pulse periods. This learning rule self-learns and integrates multiple traditional typical identification methods based on different identification principles, thereby eliminating the previously cumbersome manual labeling process. It employs 30,000 ground motion data from arbitrary directions worldwide for training and validation, resulting in three problem-specific CNN models named the Strict, General, and T_P identification models. To address the issue of insufficient temporal input information for ground motions leading to weak model generalization, this paper optimizes the input structure of the CNN model, proposing the ST-CNN model, incorporating the S-transform layer to convert ground motion time series to time-frequency, thereby enhancing frequency domain distribution information and further improving recognition accuracy. The results indicate that the Strict model can strictly differentiate between pulse-like and non-pulse-like ground motions, with results consistent with other methods; the General model can identify more pulse-like ground motions and has broader applicability; the T_P model accurately identifies pulse periods and can be used in conjunction with the aforementioned models to synchronously output identification results. The problem-specific fusion learning rule proposed in this paper can also be extended to other engineering fields and other machine learning models, and the established recognition method can provide scientific guidance for the study of pulse-like ground motions.

     

/

返回文章
返回