• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
曹子君, 胡超, 王亚飞, 苗聪, 刘涛, 洪义, 郑硕. 基于静力触探试验和变维联合后验分布的土层剖面高效优化识别方法高效优化识别方法[J]. 岩土工程学报, 2025, 47(2): 346-354. DOI: 10.11779/CJGE20230715
引用本文: 曹子君, 胡超, 王亚飞, 苗聪, 刘涛, 洪义, 郑硕. 基于静力触探试验和变维联合后验分布的土层剖面高效优化识别方法高效优化识别方法[J]. 岩土工程学报, 2025, 47(2): 346-354. DOI: 10.11779/CJGE20230715
CAO Zijun, HU Chao, WANG Yafei, MIAO Cong, LIU Tao, HONG Yi, ZHENG Shuo. Efficient optimization identification method for soil stratification based on cone penetration test and joint posterior distribution of variable dimensionality[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 346-354. DOI: 10.11779/CJGE20230715
Citation: CAO Zijun, HU Chao, WANG Yafei, MIAO Cong, LIU Tao, HONG Yi, ZHENG Shuo. Efficient optimization identification method for soil stratification based on cone penetration test and joint posterior distribution of variable dimensionality[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 346-354. DOI: 10.11779/CJGE20230715

基于静力触探试验和变维联合后验分布的土层剖面高效优化识别方法高效优化识别方法

Efficient optimization identification method for soil stratification based on cone penetration test and joint posterior distribution of variable dimensionality

  • 摘要: 基于静力触探试验数据的土体力学分类方法(如土体分类指数Ic)应用广泛。然而,基于土体分类指数划分土层依赖于工程经验,主观不确定性较大,土体力学分层与基于钻孔取样的物性分层未必一致。在贝叶斯学习框架下,提出了一种基于Ic数据和土层力学剖面参数联合概率分布的高效优化识别方法。所提方法基于全高斯概率模型推导土体分类指数(Ic)数据的似然函数,利用模拟退火算法搜索土层剖面参数联合后验分布的最大值,通过比较不同土层数目对应的联合后验分布最大值识别土层数目和土层厚度(边界)。最后,通过杭州某地铁区间CPT数据和模拟数据说明了所提方法的合理性和有效性,并结合土层识别结果说明了所提方法的分层原理和特点。结果表明:所提方法基于Ic数据识别土体力学分层的计算效率显著提高,适用于不同深度CPT数据分析,计算流程较简便,便于工程应用。

     

    Abstract: The mechanical stratification of soils based on the cone penetration test data (such as soil classification index Ic) is widely applied. However, the soil stratification based on Ic depends on engineering experience, and the subjective uncertainty is prominent. The mechanical stratification of soils is not necessarily consistent with the stratification based on borehole sampling. An efficient optimization identification method based on Ic data and the joint probability density function of mechanical profile parameters of soils is proposed under the framework of the Bayesian learning. The proposed method utilizes a full Gaussian probabilistic model to derive the likelihood function and then optimizes the maxima of the joint probability density function of mechanical profile parameters of soils using the simulated annealing algorithm. Subsequently, the number of soil layers and the associated soil thicknesses or boundaries are obtained by comparing the maxima of the joint probability density function with respect to the different numbers of soil layers. Finally, the rationality and validity of the proposed method are illustrated by a set of CPT data obtained from a subway section in Hangzhou and the simulated data, and the stratification principle and characteristics of the proposed method are illustrated with the identification results of soil profiles. The results show that the calculation efficiency of the proposed method for identifying the mechanical stratification of soils based on the Ic data is significantly improved, and it is suitable for analyzing the CPT data with different sounding depths. The calculation procedure of the proposed approach is relatively simple and is convenient for engineering applications.

     

/

返回文章
返回