Abstract:
The submarine pipeline is a key component of deep-sea oil and gas engineering, and the in-place stability of pipelines is affected by ocean waves and hydrodynamic loads, soil resistance and pipeline characteristics. The existing analytical methods are difficult to accurately evaluate the in-place stability of submarine pipelines under water-soil-pipe coupling. For this reason, a pipeline-water interaction analysis program and a pipeline-soil interaction analysis program are established using the FORTRAN programming language firstly. The former uses the Fourier analysis to calculate the hydrodynamic loads acting on the pipelines, and corrects the loads based on displacement change of the pipelines in real time. The latter is based on the existing pipeline-soil interaction model to calculate the horizontal soil resistance of the pipelines during movement. Subsequently, the above programs are coupled based on the DLOAD and UEL subroutines in the finite element analysis software ABAQUS to ultimately form a water-soil-pipeline coupling analysis platform for analyzing the in-place stability of the submarine pipelines. The effects of sea conditions, soil properties and pipeline shape parameters on the in-place stability of the pipelines are comprehensively considered in the platform, providing a reference for the in-place stability analysis of the submarine pipelines in practical projects.