• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
栾绍凯, 陈苏, 丁毅, 金立国, 王巨科, 李小军. 深切V型峡谷物理驱动人工智能波动模拟[J]. 岩土工程学报, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263
引用本文: 栾绍凯, 陈苏, 丁毅, 金立国, 王巨科, 李小军. 深切V型峡谷物理驱动人工智能波动模拟[J]. 岩土工程学报, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263
LUAN Shaokai, CHEN Su, DING Yi, JIN Liguo, WANG Juke, LI Xiaojun. Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263
Citation: LUAN Shaokai, CHEN Su, DING Yi, JIN Liguo, WANG Juke, LI Xiaojun. Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263

深切V型峡谷物理驱动人工智能波动模拟

Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method

  • 摘要: 高山峡谷区场地地震效应是地震工程领域研究热点。V形峡谷引起的圆柱形SH波散射和衍射波函数的级数解已较为成熟,并为众多河谷区重大工程提供了合理、科学的地震动输入。采用物理驱动深度学习方法结合与解析结果的对比分析,近一步明确了V型河谷地形地震反应特性及复杂波场空间分布。此方法主要关注稀疏样本及可诠释性人工智能,结合强形式自动微分和软约束边界条件嵌入,建立深度神经网络实现半无限域地震传播模型。采用时间域分解策略,实现不同给定波场工况下V型河谷高精度预测。通过与解析解对比,评估了所提出的物理驱动人工智能方法的精度和效率。结果表明,物理驱动人工智能方法可应用于地形效应分析,柱面SH波在V型峡谷底端发生显著衰减与振荡,边缘区呈现放大效应。

     

    Abstract: The seismic effects of alpine and canyon sites are a research hotspot in the field of earthquake engineering. The series solution of the two-dimensional scattering and diffraction wave functions of cylindrical SH waves caused by V-shaped canyons is relatively mature and provides reasonable and scientific ground motion input for many major projects in river valleys. In this study, the physics-informed deep learning method combined with the comparative analysis of the analytical results is used to further clarify the seismic response characteristics and complex wave field spatial distribution of the V-shaped river valley. The method mainly focuses on sparse samples and interpretable artificial intelligence, and establishes a deep neural network to realize the semi-infinite seismic propagation model by combining the strong formal automatic differentiation with the soft constraint boundary condition embedding, and realizes high-precision prediction of V-shaped river valleys under different given wave field conditions by adopting the time domain decomposition strategy. By comparing with the analytical solution, the accuracy and efficiency of the proposed physics-driven artificial intelligence method are evaluated. The results show that the physics-driven artificial intelligence method can be applied to the analysis of terrain effects, and the cylindrical SH waves are significantly attenuated at the bottom of the V-shaped canyon, and the edge area shows an amplification effect.

     

/

返回文章
返回