• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
孔纲强, 陈玉, 杨庆. 冬季运行能量桩热力响应及系统性能监测与评价[J]. 岩土工程学报, 2024, 46(6): 1309-1317. DOI: 10.11779/CJGE20230203
引用本文: 孔纲强, 陈玉, 杨庆. 冬季运行能量桩热力响应及系统性能监测与评价[J]. 岩土工程学报, 2024, 46(6): 1309-1317. DOI: 10.11779/CJGE20230203
KONG Gangqiang, CHEN Yu, YANG Qing. System monitoring and evaluation and thermo-mechanical characteristics of energy piles during winter operation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1309-1317. DOI: 10.11779/CJGE20230203
Citation: KONG Gangqiang, CHEN Yu, YANG Qing. System monitoring and evaluation and thermo-mechanical characteristics of energy piles during winter operation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1309-1317. DOI: 10.11779/CJGE20230203

冬季运行能量桩热力响应及系统性能监测与评价

System monitoring and evaluation and thermo-mechanical characteristics of energy piles during winter operation

  • 摘要: 以湖北宜昌地区25 m2的建筑房间冬季供暖需求为应用场景,构建由能量桩、集分水器、热泵机组、循环水泵等组成的地源热泵系统,分析建筑房间实际冬季供暖需求条件下,能量桩系统持续或间歇运行对能量桩热力响应及系统性能的影响规律,并开展传统钻孔埋管地源热泵系统试验和空气源热泵系统试验进行对比分析。着重探讨实际运行条件下能量桩热力响应特性与传统TPT或TRT试验条件下获得结果之间的异同点,监测能量桩系统的供暖效果、能效比(COP)。持续运行试验对应桩顶出现最大温度降低值3.78℃及最大约束拉应力0.70 MPa(约为完全约束应力上限值的57.5%),运行桩较非运行对角桩对应承台部位产生的实测应变值差值在顶部和底部分别为19.98,17.78 με。实测能量桩系统COP约为3.03,较相关空气源热泵系统提高约12.2%~21.2%(规范参考COP为2.50~2.70)。能量桩系统较常规空气源热泵系统,能提前约2.5 h到达预设温度,具有更快的启动速度。

     

    Abstract: To address the winter heating demand of a 25 m2-area building room in Yichang, Hubei Province, a ground source heat pump system coupled with energy piles (referred to as "energy pile system") is constructed, which includeds energy piles, a water collector and distributor, heat pump units and a circulating water pump. Under the actual continuous or intermittent operation of the energy pile system, the thermo-mechanical characteristics of energy piles and system performance are studied. The tests on the conventional borehole buried pipe-based ground source heat pump system and the air source heat pump system are conducted for comparison and analysis as well. The study focuses on the similarities and differences of thermo-mechanical characteristics of energy piles under actual operation and the traditional TRT or TPT test conditions, and the heating performances and COP of the energy pile system are monitored. Under the test conditions in this study, corresponding to the continuous tests, the maximum temperature reduction value of 3.78℃ and the maximum thermally induced stress of 0.70 MPa (about 57.5% of the upper limit of the fully confining stress) occur at the pile top. The maximum observed strain differences between the operating piles and the non-operating piles corresponding to the cap structures at the upper and lower layer are 19.98με and 17.78με, respectively. The measured COP of the energy pile system is about 3.03, which is about 12.2%~21.2% higher than that of the related air source heat pump system (the normative reference COP is 2.50~2.70). The energy pile system has a faster start-up speed than the conventional air source heat pump, which reaches the preset temperature about 2.5 h earlier.

     

/

返回文章
返回