Abstract:
The foundation form is often chosen according to the site condition when the reinforced slope is designed in mountainous areas. The foundation stiffness directly affects the stability of the reinforced slope. The centrifugal model tests were carried out to study the deformation and stress distribution of the reinforced slope as well as its stability under different foundation stiffness conditions. For the slope with larger foundation stiffness, the settlement and horizontal displacement of the reinforced slope are relatively small, and the distribution of reinforcement tension is more uniform, so the slope has higher stability. For the slope with small foundation stiffness, the reinforcement tension at the bottom area of the slope is larger, which is easy to cause the whole reinforced slope to produce large deformation or even damage. The high-precision flexible strain gauge is used to monitor the distribution of reinforcement tension. When the foundation stiffness is small, the tensile force of the reinforcement in the lower part of the slope increased significantly, which is larger than that in the middle part of the slope. When the foundation stiffness is large, the tension of the reinforcement in the middle and lower part of the slope are smaller and more uniform.